首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
纳米ZrO2等离子涂层的结构,性能和工艺特点   总被引:6,自引:0,他引:6  
采用大气等离子喷涂技术(APS),制备了常规氧化锆和纳米结构氧化锆两种涂层.利用扫描电镜(SEM)对涂层的显微结构进行了观察.对两种涂层的沉积效率、表面粗糙度和显微硬度作了对比研究.结果表明,粉末原料的显微结构、粒度、形态、喷涂工艺参数(喷涂功率和距离)对涂层的显微结构有较大的影响.等离子喷涂造粒纳米氧化锆粉制备的涂层沉积效率高而稳定,其显微结构与喷涂功率和距离密切相关.与常规氧化锆涂层相比,纳米结构氧化锆涂层具有较高的显微硬度和较低的表面粗糙度.  相似文献   

2.
等离子喷涂纳米Al2O3/TiO2复合陶瓷涂层的显微组织与性能   总被引:7,自引:0,他引:7  
采用液相喷雾造粒方法将纳米级Al2O3/TiO2团聚成微米级颗粒,制备了适用于等离子喷涂的陶瓷复合粉体,并利用等离子喷涂技术成功的制备出了含有纳米结构的陶瓷涂层.利用X射线衍射、扫描电镜、透射电镜和显微硬度计等设备对涂层的微观结构和性能做了初步的检测.结果表明,涂层中含有适当比例的未熔或半熔的纳米颗粒,涂层的硬度、韧性和耐磨性等性能与普通涂层相比都有了较大提高.  相似文献   

3.
氧化锆纳米等离子涂层的结构与热震性能研究   总被引:16,自引:0,他引:16  
利用大气等离子喷涂技术, 制备了氧化锆纳米结构和常规结构涂层, 并对涂层的显微结构进行了探查. 结果表明: 纳米结构涂层是由直径为100nm左右的柱状晶粒组成的层状结构; 涂层中存在大量的微裂纹和分布均匀的细小圆气孔. 纳米结构的涂层具有比常规涂层更好的抗热震性能, 其热震行为与常规涂层不同.  相似文献   

4.
碳化钨/钴热喷涂粉末和涂层的研究进展   总被引:4,自引:0,他引:4  
张敬国  刘金炎  蒋显亮 《功能材料》2005,36(3):332-334,339
热喷涂传统碳化钨/钴金属陶瓷作为耐磨涂层已得到广泛的应用。近几年来,纳米结构涂层的热喷涂研究成为新的发展趋势。本文总结了传统和纳米结构 WC/Co热喷涂粉末的制备方法及其性质对涂层性能的影响因素,分析了涂层的微观结构和脱碳机理,简述了热喷涂纳米结构及纳米结构 微米结构 WC/Co涂层的研究进展,并指出了其发展方向。  相似文献   

5.
Stainless steel coatings provide an alternative to protect steel surfaces against corrosive attack. The 316 L stainless steel coatings have been conventionally produced by different spraying processes for such applications. Because the nitrogen alloyed stainless steels exhibit not only superior mechanical properties, but also better corrosion behaviour than conventional stainless steels, in this study the coatings of a nitrogen alloyed austenitic steel were produced using a high velocity oxy-fuel (HVOF) spraying process and an atmospheric plasma spraying (APS) process. Due to much stronger deformation strengthening, the coatings deposited by the HVOF spraying process presented a much higher microhardness than the coatings deposited by the APS process. Moreover, the coatings deposited by the HVOF spraying process were also more corrosion resistant than the coatings deposited by the APS process, because the oxidation of the powder material during HVOF spraying was much lower than that during APS. Compared with the coatings of the conventional stainless steel 316 L, the nitrogen alloyed steel coating deposited by the HVOF spraying process showed a much better corrosion performance.  相似文献   

6.
微弧等离子喷涂AT13纳米涂层的工艺优化   总被引:4,自引:0,他引:4  
根据微弧等离子喷涂在不同工艺参数下制备的AT13纳米涂层结合强度和显微硬度的测试结果, 运用遗传神经网络算法对喷涂工艺参数与涂层结合强度和显微硬度之间的非线性关系进行建模与仿真, 并应用遗传算法和多目标优化理论对AT13纳米涂层的性能进行了优化. 研究结果表明, 仿真值与实验值相一致, 相对误差<0.5%; 喷涂电流、Ar流量和Ar压力分别为150A、64m3/h和0.38MPa时, AT13纳米涂层综合性能最佳.  相似文献   

7.
The microstructure of coatings obtained from nanostructured or conventional Al2O3–13TiO2 powders and deposited by plasma spraying technique on low-carbon steel was examined by transmission electron microscopy techniques. The dominating phase in both coatings was γ-Al2O3 phase. It has been observed that the grains of γ-Al2O3 grew in various shapes and sizes, that are particularly visible in the case of coating sprayed from nanostructured powder. The coatings obtained from the fully melted conventional powders exhibited a typical lamellar microstructure, into which the strips of TiO2 phase were extended. The microstructure of coatings produced from agglomerates of nanostructured particles also revealed the regions consisting of partially melted α-Al2O3 powders surrounded by the net-like structure formed from fully melted oxides that improved the coating properties. Along with the observed morphology diversity some changes in the chemical composition on the cross sections of obtained coatings have been also noticed.  相似文献   

8.
The nanostructured zirconia coatings were deposited by atmospherically plasma spraying. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction were used to investigate the microstructure of the zirconia coatings. Thermal diffusivity values at normal temperatures have been evaluated by laser flash technique. Effect of annealing on the microstructure evolution of the zirconia coating has been performed. The grains and thermal diffusivity are increased with increasing annealing time and temperature. The grain growth is according to the GRIGC (the grain rotation induced grain coalescence) mechanism. The increase in thermal diffusivity is attributed to the grain growth and the decrease in porosity of nanostructured zirconia coatings.  相似文献   

9.
采用由喷雾造粒制备的纳米团聚粉末并通过等离子喷涂制备出纳米Al2O3-13wt%TiO2涂层.研究分析了涂层的相组成、显微结构、硬度及断裂韧性,结果发现,该纳米涂层呈现出由两部分不同区域组成的双态分布结构:一部分为完全熔化后凝固形成的层状结构;另一部分则为部分熔化的粒状结构,其内保留来源于喷涂喂料的纳米或亚微米粒子.涂层中与未熔纳米α-Al2O3粒子含量成比例的部分熔化区百分数可以通过调整关键喷涂工艺参数(CPSP)来控制.纳米涂层所具有的这种混合结构特性,可以被其力学性能的双态分布特征所证实.Weibull统计分析表明,涂层的显微硬度和断裂韧性均呈现出双态分布,部分熔化区的显微硬度及其分散性均比完全熔化区低,而其断裂韧性及其分散性则均比完全熔化区高.  相似文献   

10.
Nanosized partially yttria stabilized zirconia particles, prepared using a co-precipitation method, were reprocessed into agglomerate powders using two methods for plasma spraying. The first method was to make micrometer-sized agglomerates directly following the grinding of the calcined yttria–zirconia agglomerates. The second method was to reconstitute the nanosized particles into micrometer agglomerates using spray drying. The deposition efficiency, porosity, microhardness and average grain size of the deposits made from these two reprocessed powders were studied. Distinct results related to the process parameters were obtained for the two types of powders. The second type of powder was more suitable for plasma spraying than the first one. Using the second type of powder, some unique results distinguished from those of the conventional partially yttria stabilized zirconia powders were observed and an optimized coating with a porosity of 3.8%, Hv0.3 of 953 and mainly consisting of 1–3 μm columnar grains in the columnar direction and smaller than 100 nm in their cross-sections was achieved.  相似文献   

11.
In this study, a conventional 80 kW class plasma spraying system was used to produce yttria-stabilized-zirconia (YSZ) coatings by PS-PVD at a pressure of 100 Pa. A shroud was attached in the front of the plasma nozzle to restrain expansion of plasma jet. The torch was operated at an arc power of 45 kW and YSZ coatings were deposited at a powder feed rate of 0.2 g/min. Optical emission spectroscopy was used to diagnose the particle state in plasma jet. The surface morphology and cross-sectional morphology of coatings was characterized by field emission scanning electron microscope. It is found that the amount of YSZ evaporation is significantly enhanced through using a shroud. The coatings with a hybrid microstructure of splats and nanoclusters were deposited perpendicular to the coatings. The nanostructured clusters deposited out of the vapor are presented at splat interfaces. It is evident that using powders specially designed for PS-PVD and controlling heating of plasma jet to spray particles, PS-PVD deposition for a hybrid microstructure consisting of vapor phase deposit can be realized through conventional plasma spray system. Columnar grain structured YSZ can also be deposited by pure vapor phase at the side surface of the substrate.  相似文献   

12.
Nanostructured Al2O3–TiO2–ZrO2 composite powders for plasma spraying were prepared by spray drying granulation technology. The effects of processing parameters on the microstructure and properties of composite powders were investigated. The results show that with increasing the slurry solid content, the particle size of powders increases, and the bulk density of powders increases, and the flowability of powders increases firstly and then decreases. With increasing the binder content, the particle size of powders increases, and the bulk density of powders increases, and the flowability of powders increases firstly and then decreases. With increasing the spray drying temperature, the particle size of powders increases, and the bulk density and flowability of powders increases firstly and then decreases. The most appropriate spray drying parameters are the slurry solid content of 40 wt.%, the binder content of 2.0 wt.% and the spray drying temperature of 250 °C. The nanostructured composite coating was successfully prepared by using the as-prepared nanostructured Al2O3–TiO2–ZrO2 composite powders as feedstocks. The nanostructured coating possessed higher hardness and toughness compared with the conventional microstructured one, which was attributed to the use of the nanostructured composite powders feedstocks.  相似文献   

13.
L. Wang  Y. Wang  X.G. Sun  J.Q. He  Z.Y. Pan  C.H. Wang 《Vacuum》2012,86(8):1174-1185
The nanostructured agglomerated feedstock used for plasma spraying was obtained by the nanoparticle reconstituting technique. Nanostructured and conventional ZrO2–8wt%Y2O3 (8YSZ) thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying (APS) on 45# steel substrates with the NiCrAlY as the bond-layer. The microstructure and phase composition of feedstocks and corresponding coatings were characterized. The top layer of nanostructured 8YSZ TBCs is denser and has fewer defects than that of conventional TBCs. The elastic modulus, micro-hardness and Vickers hardness of nanostructured 8YSZ TBCs exhibit bimodal distribution while the conventional 8YSZ exhibit mono-modal distribution. The elastic modulus and elastic recoverability were also obtained by the nanoindentation test. The results indicate that the elastic modulus of nanostructured 8YSZ coating is lower than that of conventional 8YSZ coating, but the nanostructured 8YSZ coating has higher elastic recoverability than that of the conventional 8YSZ coating. The prediction of the average elastic modulus was established by the mixture law and weibull distribution according to the fraction of phases with different molten characteristic.  相似文献   

14.
等离子喷涂层的硬度是反映其耐磨性、强度、使用寿命的重要指标,它与涂层的组构有对应的关系,但其测定结果分散性较大。为了精确测量陶瓷等离子喷涂层的硬度,在NiCrAl合金表面等离子喷涂制备了Al2O3-13%TiO2(AT13)纳米陶瓷涂层(ncc)和对照用微米涂层(mcc),采用显微硬度测试仪测量了其显微硬度,研究了其Weibull分布特性,通过SEM、XRD等分析了ncc涂层显微硬度与微观组织结构的关系,并通过TEM对涂层的微区结构进行了表征。结果表明:ncc涂层的平均显微硬度显著高于mcc,且呈双态分布;两者硬度的Weibull分布呈分散性,但ncc涂层的分布较均匀,微裂纹细小且粒径小,以α-Al2O3和γ-Al2O3及少量金红石型TiO2为主要物相;ncc涂层具有优异的力学性能主要归因于其组织的晶粒细化、纳米TiO2颗粒镶嵌于Al2O3孔隙中、Al2O3微晶弥散分布、微裂纹韧化等。  相似文献   

15.
热喷涂纳米结构涂层的研究现状   总被引:6,自引:0,他引:6  
介绍了国内外喷涂用纳米结构喂料的制备方法以及在应用热喷涂技术制备纳米结构涂层方面的研究进展.与传统材料的热喷涂涂层相比,纳米结构涂层在力学、摩擦学以及耐磨防腐蚀性能方面有了较大的提高.  相似文献   

16.
等离子喷涂纳米ZrO_2-8%Y_2O_3涂层的结构及性能   总被引:2,自引:0,他引:2  
热障涂层能提高工件的性能,延长其使用寿命,但目前对其厚度0.5 mm以上的研究报道不多.为此,以纳米ZrO2-8%(质量分数)Y2O3粉末(YSZ)为原料,用等离子体喷涂法制备了3种厚度(0.6,0.8,1.2 mm)的热障涂层,并对涂层的结构和性能进行了研究.结果表明:纳米涂层主要由未熔粉末及周围的柱状晶、等轴晶组成,可观察到大量纳米晶,喷涂电流对组织结构的影响远大于喷涂距离;热障涂层结合强度随涂层厚度的增加而降低;涂层隔热性能随涂层厚度的增加而提高,温度越高优势越明显.  相似文献   

17.
热喷涂用纳米结构Al_2O_3/TiO_2/SiO_2团聚体粉末的研究   总被引:2,自引:1,他引:2  
对喷雾干燥和不同温度热处理后Al2O3/TiO2/SiO2纳米团聚体粉末的流动性、松装密度及振实密度进行了测试,对喷雾干燥后的粉末进行了热重-差热分析,通过扫描电镜观察了粉末颗粒形貌和大小,采用X射线衍射分析了不同温度热处理后粉末的相组成,并对粉末的综合性能进行了比较。实验结果表明:在1000~1450℃热处理后的Al2O3/TiO2/SiO2纳米团聚体粉末颗粒仍近似球形,粒径在10~100μm之间。随着热处理温度升高,纳米团聚体大颗粒表面发生塌陷,大颗粒之间发生连接,大颗粒内部纳米颗粒明显长大。低于1250℃热处理后的粉末流动性好,振实密度高,适于等离子体喷涂制备纳米结构涂层。  相似文献   

18.
Plasma Spraying of Al2O3 and ZrSiO4 to Form ZrO2- Mullite Composites   总被引:2,自引:0,他引:2  
Zirconia is effective in improving fracture toughness of a number of ceramics when introduced as a reinforcement either in the form of participates, dispersed phase or whiskers because of its unique tetragonal-monoclinic (t → m) transformation. In this paper, the authors attempt to prepare ZrO2, reinforced mullite by plasma spraying mixtures of zircon and alumina. Pre-mixed powders of zircon and alumina are injected onto a D.C. plasma jet. The plasma sprayed particles are collected in distilled water and analyzed. The results indicate that the plasma sprayed powders consist of zirconia, zircon, and alumina. It was found that fine grained, even amorphous and chemically homogeneous composite powders could be obtained by ball milling and plasma spraying. Recrystallization of amorphous phases and formation of mullite occurred at about 1OOO°C in plasma sprayed powders. This value is more than 500°C lower than the formation of mullite in asmilled powders. Uniform coatings with good structural integrity were obtained by plasma spraying. The relative quantity of mullite in coatings after heat treatment is about 4 times as much as that obtained in the spheroidized powders. Preheat treatment of the spheroidized powder promoted dissociation of zircon. Zirconia remained as tetragonal under 1000°C in the sprayed coatings.  相似文献   

19.
Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. Keywords: High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,  相似文献   

20.
热喷涂纳米涂层制备方法及材料研究现状和展望   总被引:1,自引:0,他引:1  
综述了热喷涂纳米涂层的制备方法现状及所用材料的发展情况,介绍了溶液等离子喷涂(SPS)、冷气动力喷涂(CGDS)、高速火焰喷涂(HVOF)技术制备纳米涂层的优势、纳米粉末材料的制备方法及发展趋势,指出纳米涂层制备的主要关键在于解决纳米粉末的输送技术和涂层制备过程中抑制纳米颗粒的长大趋势.纳米涂层的研究对推动热喷涂技术应用有着十分重要的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号