首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core–shell (MWSNT–TiC) type structure.  相似文献   

2.
Aluminum doped zinc oxide (AZO) thin films were prepared by DC magnetron sputtering at low substrate temperature. A coaxial solenoid coil was placed near the magnetron target to enhance the plasma density (Ji). The enhanced plasma density improved significantly the bulk resistivity (ρ) and its homogeneity in spatial distribution of AZO films. X-ray diffraction (XRD) analysis revealed that the increased Ji had inuenced the crystallinity, stress relaxation and other material properties. The AZO films deposited in low plasma density (LPD) mode showed marked variation in ρ (ranging from ~6.5×10?2 to 1.9×10-3 ·cm), whereas those deposited in high plasma density (HPD) mode showed a better homogeneity of films resistivity (ranging from ~1.3×10?3 to 3.3×10?3 ?·cm) at di?erent substrate positions. The average visible transmittance in the wavelength range of 500-800 nm was over 80%, irrespective of the deposition conditions. The atomic force microscopy (AFM) surface morphology showed that AZO films deposited in HPD mode were smoother than that in LPD mode. The high plasma density produced by the coaxial solenoid coil improved the electrical property, surface morphology and the homogeneity in spatial distribution of AZO films deposited at low substrate temperature.  相似文献   

3.
Inorganic nanocarbon hybrid materials are good alternatives for superior electrochemical performance and specific capacitance to their traditional counterparts. Nanocarbons act as a good template for the growth of metal nanoparticles on it and their hybrid combinations enhance the charge transport and rate capability of electrochemical materials without sacrificing the specific capacity. In this study, titanium dioxide nanotubes (TNT) are synthesized hydrothermally in the presence of multi-walled carbon nanotubes (MWCNT) where the latter acts as base template material for the metal oxide nanotube growth. The MWCNT–TNT hybrid material possesses very high dielectric strength and this is used to enhance the dielectric property of the polymer polyvinyledene fluoride (PVDF). Solution mixing was used to prepare the PVDF/MWCNT–TNT nanocomposites by varying the filler concentrations from 0.5 to 2.5 wt%. Excellent vapor sensing was noticed for the PVDF nanocomposites with different rate of response towards commonly used laboratory solvents. The composites and the fillers were characterized for its morphology and structural properties using scanning and transmission electron microscopy, X-ray diffraction studies and infrared spectroscopy. Vapor sensing was measured as relative resistance variations against the solvent vapors, and the dielectric properties of the composites were measured at room temperature during the frequency 102–107 Hz. Experimental results revealed the influence of filler synergy on the properties of PVDF and the enhancement in the solvent vapor detectability and dielectric properties reflects the ability of these composite films in flexible vapor sensors and in energy storage.  相似文献   

4.
m-Aramid nanocomposite films containing 1.0 wt% hybrid fillers of different compositions of graphene and multi-walled carbon nanotube (MWCNT) are prepared by an efficient solution-casting method, and their electric heating behavior is investigated as a function of the composition of hybrid fillers. Electron microscope images and X-ray diffraction patterns reveal that the hybrid fillers are well dispersed in the m-aramid matrix by forming interconnected networks among graphene sheets and MWCNTs. The electrical resistivity of the nanocomposite films is decreased gradually from ~105 to 101 Ω cm with increasing the MWCNT content in the hybrid fillers. Accordingly, maximum temperature attained at a given applied voltage for the nanocomposite films can be finely controlled by the graphene/MWCNT composition of 1.0 wt% hybrid fillers. The m-aramid/hybrid filler nanocomposite films also exhibit excellent electric heating performance in aspects of rapid temperature response and high electric power efficiency at applied voltages of 1–100 V.  相似文献   

5.
In this study, growth nano-layer metals (Al, Cu, Ag) and Al-doped ZnO (AZO) thin films are deposited on glass substrates as the transparent conducting oxides (TCOs) to form AZO/nano-layer metals/AZO sandwich structures. The conductivity properties of thin films are enhanced when the average transmittance over the wavelengths 400–800 nm is maintained at higher than 80 %. A radio frequency magnetron sputtering system is used to deposit the metal layers and AZO thin films of different thickness, to form AZO/Al/AZO (ALA), AZO/Cu/AZO (ACA) and AZO/Ag/AZO (AGA) structures. X-ray diffraction and field emission scanning electron microscopy are used to analyze the crystal orientation and structural characteristic. The optical transmission and resistivity are measured by UV–VIS–NIR spectroscopy and Hall effect measurement system, respectively. The results show that when the Ag thickness is maintained at approximately 9 nm, the TCOs thin film has the lowest resistivity of 8.9 × 10?5 Ω-cm and the highest average transmittance of 81 % over the wavelengths 400–800 nm. The crystalline Ag nano-crystal structures are observed by high-resolution transmission electron microscopy. In addition, the best figure of merit for the AZO/Ag/AZO tri-layer film is 2.7 × 10?2?1), which is much larger than that for other structures.  相似文献   

6.
Tin/tinoxide/multi-walled carbon nanotube (Sn/SnO2/MWCNT) core-shell structure nanocomposite anode is produced by thermal evaporation and subsequent plasma oxidation with using MWCNT buckypaper. Metallic tin is evaporated onto free-standing and flexible MWCNT buckypaper having controlled porosity and subsequent RF plasma oxidized in Ar:O2(1:1) gas mixture. X-ray diffraction and scanning electron microscopy are used to determine the structure and morphology of the obtained nanocomposite. The electrochemical characteristics of the nanocomposite anode are examined by using electrochemical impedance spectroscopy and galvanostatic charge–discharge experiments. Family of Nyquist plots during first discharge process are obtained and studied at different voltage values.  相似文献   

7.
4,4-bis(1-Azo-2-hydroxy-3-naphthoyl-o-chloroanide) oxazole (AZO) nanoparticles in size of 40–60 nm were prepared by the method of liquid phase surfactant-assisted reprecipitation. The AZO nanoparticles were characterized by UV/VIS absorption, X-ray diffraction pattern, and TEM measurements. It revealed that AZO nanoparticles were near spherical in shape and were in amorphous state. The photoconductivity of AZO nanoparticles in single-layered photoreceptors was studied as well. The results showed that the photoconductivity of AZO nanoparticles was improved greatly compared to that of bulk AZO due to nanometer size effect.  相似文献   

8.
We report on the enhanced capacitive properties of a copper(I) oxide nanoparticle (Cu2O NP)-decorated multiwalled carbon nanotube (MWCNT) forest with nitrogen (N) doping. A careful in situ solid-state dewetting and plasma doping method was developed that ensured homogeneous decoration and contamination-free Cu2O NPs with N doping on the nanotube sidewalls. The morphology and structure of the hybrid materials were characterised by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy and X-ray photoemission spectroscopy. The electrochemical performance of the hybrid materials was investigated by cyclic voltammetry and galvanostatic charge/discharge tests in a 0.1 M Na2SO4 electrolyte. The electrochemical tests demonstrated that the Cu2O NP/N-MWCNT electrode exhibits a specific capacitance up to 132.2 F g?1 at a current density of 2.5 A g?1, which is 30% higher than that of the pure MWCNT electrode. Furthermore, the electrode could retain the specific capacitance at 85% stability over 1000 cycles. These observations along with the simple assembly method for the hybrid materials suggest that the Cu2O NP/N-MWCNT could be a promising electrode for supercapacitor applications.  相似文献   

9.
A surface bond-grafted multi-walled carbon nanotube (MWCNT)/TiO2 as supporter, palladium nanoparticles, approximately 3 nm in diameter, are uniformly deposited on the functional MWCNT surface in first, constructing a novel Pd-MWCNT/TiO2 photocatalyst for photocatalytic solar conversion. The characterization of photocatalysts by a series of joint techniques, including BET surface area, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), Raman spectroscopy and ultraviolet/visible (UV/vis) diffuse reflectance spectra, discloses that palladium nanoparticles has a crucial role in enhancement of photocatalytic activity of MWCNT/TiO2, that is to act as a charge transfer channel, which helps to trap electrons from MWCNT to TiO2.  相似文献   

10.
In the present study, it has been reported on the effect of Al doping on linear and nonlinear optical properties of ZnO thin films synthesized by spray pyrolysis method. The structural properties of ZnO thin films with different Al doping levels (0–4 wt%) were analyzed using X-ray diffraction (XRD). The results obtained from XRD analysis indicated that the grain size decreased as the Al doping value increased. The UV–Vis diffused refraction spectroscopy was used for calculation of band gap. The optical band gap of Al-doped ZnO (AZO) thin films is increased from 3.26 to 3.31 eV with increasing the Al content from 0 to 4 wt%. The measurements of nonlinear optical properties of AZO thin films have been performed using a nanosecond Nd:YAG pulse laser at 532 nm by the Z-scan technique. The undoped ZnO thin film exhibits reverse saturation absorption (RSA) whereas the AZO thin films exhibit saturation absorption (SA) that shows RSA to SA process with adding Al to ZnO structure under laser irradiation. On the other hand, all the films showed a self-defocusing phenomenon because the photons of laser stay on below the absorption edge of the ZnO and AZO films. The third-order nonlinear optical susceptibility, χ(3), of AZO thin films, was varied from of the order of 10?5–10?4 esu. The results suggest that AZO thin films may be promising candidates for nonlinear optical applications.  相似文献   

11.
Polypyrrole (PPy) nanocomposites were synthesized using ferric chloride (FeCl3) as an oxidant by in situ polymerization at room temperature in which reduced graphene oxide- multi-walled carbon nanotubes (RGO–MWCNT) and zinc oxide (ZnO) were used as fillers. RGO–MWCNT and ZnO were synthesized by solution mixing and surfactant assistant precipitation respectively. The RGO–MWCNT–ZnO /PPy nanocomposites were prepared by loading 2, 5, 10 and 20 wt% of RGO–MWCNT:ZnO (1:1) in PPy to measure the electrical conductivity. The PPy nanocomposites were characterized by using FTIR, X-ray diffraction and FESEM. Furthermore, these RGO–MWCNT–ZnO/PPy nanocomposites were investigated to study sensing of ammonia gas at room temperature. The response of 20 wt% loading RGO–MWCNT–ZnO/PPy was observed to be 325% towards 200 ppm of ammonia gas.  相似文献   

12.
ZnO纳米棒Al掺杂和A1,N共掺杂的制备技术与光致发光性能   总被引:1,自引:0,他引:1  
采用水热法首先合成了Al掺杂ZnO(AZO)纳米棒,在此基础上通过550℃的氨气氛中退火制备了Al,N共掺杂ZnO(ANZ())纳米棒.运用X射线衍射(XRD),场发射扫描电镜(FESEM),透射电子显微镜(TEM),X射线能谱(EDS)和光致发光(PL)对样品进行了表征与分析.结果表明,制备的AZO和ANZ()纳米棒...  相似文献   

13.
Advanced materials such as continuous fibre-reinforced polymer matrix composites offer significant enhancements in strength and fracture resistance properties as compared with their bulk, monolithic counterparts. In the present work, mode-I (tensile) fracture behaviour of the neat epoxy (without nano- or hybrid reinforcements), nanocomposite (with amino-functionalized multi-walled carbon nanotube (MWCNT) reinforcement to neat epoxy) and hybrid composite (with amino MWCNT and carbon fibre reinforcements to neat epoxy) along with their flexural strength and interlaminar shear strength has been reported and discussed. Limited topological studies have also been conducted to understand the nature of material fracture and its dependence on the notch orientation. The results thus obtained are analysed and discussed in detail to elucidate: (i) alignment of fibre and its influence on the anisotropy in strength and fracture resistance, (ii) dependence of notch root radii on the apparent fracture toughness and concurrence to strain-controlled fracture and (iii) finally, the nature of JR curves. The results thus obtained have revealed that the resistance to fracture is significantly increased with the addition of amino-functionalized MWCNTs and carbon fibres. In the hybrid composite, fracture resistance is greater in the longitudinal orientation of fibres than in the transverse orientation and it exhibits a significantly higher strength–fracture toughness combination.  相似文献   

14.
In this paper, we studied the effects of the aluminium dopant concentration on the optical and electrical properties of aluminium doped zinc oxide (AZO) thin films grown on soda-glass substrates by a simple chemical method. The amount of aluminium in the compound was varied from 0 to 5 atomic percent (at.%), and the typical thickness of the films produced was about 300 nm. The thin films were characterized by scanning electron microscopy and X-ray diffraction to investigate the morphology and crystallinity of the samples. The optical properties of the thin films were studied by UV–Vis spectroscopy to determinate absorption, transmittance, and the diffuse reflectance. In addition, the photoluminescence properties of the thin films, excited with a 320 nm UV laser beam, were investigated. The effects of the aluminium concentration on these optical properties are discussed. The films with 2 and 5 % doping had excellent optical transmittance (~85–90 %) in the 400–1100 nm wavelength range. The photoluminescence spectra of the AZO films revealed UV near band edge emission peaks in the 378–401 nm range and an oxygen-vacancy related peak around 471 nm. The addition of aluminium changed the band gap of zinc oxide from 3.29 to 3.41 eV, and the appearance of a new level was observed in the band gap at the higher aluminium doping concentrations. The AZO thin films showed good conductivity (in the order of 10?2 Ω cm) which allows their use as transparent electrodes. Moreover, the AZO thin films were stable in open air for 30 days.  相似文献   

15.
Al-doped ZnO (AZO) thin film, which possess the advantages of low cost, low sheet resistance and high transmittance, are one of the most promising candidates to replace indium tin oxide films as the transparent electrode. However, oxidation causes a substantial increase in the sheet resistance of AZO film after exposing in ambient and especially, damp heat environment. In this work, we compare structural, optical, electrical properties and environmental stability between films prepared by two different methods: sol–gel and rf sputtering. Experimental results indicate that the properties of film can be affected by different deposition method. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure with different preferable orientation in two different methods. Optical transmittance spectra of the AZO films exhibited transparency higher than about 80 % within the visible wavelength region and the optical band gap (Eg) of these films was increased in sputtered film, probably due to the increase of carrier concentration. The better environmental stability was found in AZO film prepared by sputtering method. Improved surface morphology and enhancement of crystal orientation (110) was considered for this improvement.  相似文献   

16.
Poly(3,4-ethylenedioxxythiophene) (PEDOT), polyaniline (PANI) and polythiophene (PTh) based multi-walled carbon nanotube (MWCNT) composites were successfully prepared using RF-rotating plasma grafting method. Morphological characterizations of composites were determined using scanning electron microscopy (SEM), which showed that conducting polymers (CPs) of PEDOT, PANI and PTh were coated on the surface of CNTs. The surface properties of the Carbon Nanotube (CNT) composites were also determined by using Infrared Spectra (FT-IR), X-ray Photon Spectra (XPS), and Scanning Electron Microscopy-Energy Dispersive X-ray Spectra (SEM-EDX) analysis. X-ray photon spectra results confirmed the formation of the composites. Composites of MWCNT were used in dye-sensitized solar cells (DSSCs) as counter electrodes and exhibited short-circuit photocurrent densities of 11.19, 10.70 and 8.54 mA/cm2 for PANI/MWCNT, PTh/MWCNT and PEDOT/CNT, respectively.  相似文献   

17.
Multi wall carbon nanotube (MWCNT) supported CoMo catalyst was prepared and hydrodesulphurisation (HDS) activity of naphtha was evaluated in a fixed bed down flow reactor. Activity test experiments were conducted at a temperature of 310°C, pressure of 15?bar and liquid hourly space velocity of 4/h. The conditions were close to those of industrial practice. The structure of the MWCNT was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and accelerated surface area and porosity system (ASAP). The catalyst was characterised by X-ray diffraction, SEM, energy dispersive X-ray, inductively coupled plasma optical emission spectrometry, TEM and ASAP. Also for sulphur species study, naphtha feed and product were analysed by gas chromatography–sulphur chemiluminescence detection. Catalytic activity test indicated that MWCNT is a suitable support for HDS catalyst. Sulphur conversion of the catalyst was 88%. Also sulphur species comparison showed that all the sulphur types were converted.  相似文献   

18.
The hydrothermal characteristics of minichannel heat sink are analyzed experimentally by using deionized (DI) water based different nanoparticles mixture dispersed hybrid nanofluids. Al2O3, MgO, SiC, AlN, MWCNT and Cu nanoparticles are considered for this study. Different nanoparticles combinations (oxide-oxide, oxide-carbide, oxide-nitride, oxide-carbon nanotube and oxide-metal) in 50/50 vol ratio with base fluid (DI water) have been taken as coolants for volume concentration of 0.01%. Effects of volume flow rate (0.1–0.5LPM), fluid inlet temperature (20–40 °C) and Reynolds number (50–500) are studied for heat flux of 50 W/cm2. Convective heat transfer coefficient and pressure drop are increased by about 42.24% and 22% for Al2O3 + MWCNT hybrid nanofluid. The maximum reduction of 21.36% in thermal resistance is obtained for Al2O3 + MWCNT hybrid nanofluid in comparison to DI water. Heat transfer effectiveness and figure of merit are above one for all the hybrid nanofluids which conclude that hybrid nanofluid is better option for electronics cooling over DI water. Al2O3 + MWCNT hybrid nanofluid is better in terms of heat transfer effectiveness; whereas, Al2O3 + AlN hybrid nanofluid (oxide-nitrite mixture) has maximum heat transfer coefficient to pressure drop ratio and coefficient of performance.  相似文献   

19.
In this study, tungsten oxide films were prepared by sol–gel technique. Various amounts of multiwalled carbon nanotubes (MWCNTs) were added during sol–gel process to obtain hybrid WO3/MWCNT films. The original and hybrid films were characterized by thermogravimetric analysis, X-ray diffraction analysis, and scanning electron microscopy analysis, whereas the electrochromic performance was evaluated by measuring changes in the optical transmittance caused by potentiostatic charge–discharge intercalation. The influence on the structure and properties of tungsten oxide film due to MWCNT addition was also investigated. The results showed that all of the films were amorphous and exhibited porous microstructure. The electrochromic performance of pristine WO3 film was improved by adding MWCNTs that served as a template for the growth of WO3 and resulted in more porous microstructure. The hybrid tungsten oxide films with 0.1 wt.% MWCNT addition exhibited the best electrochromic performance.  相似文献   

20.
Electrochemical characteristics of an electrodeposited chlorogenic acid film on multi-wall carbon nanotubes glassy carbon electrode (CGA–MWCNT–GCE) and its role as a sensor for electrocatalytic oxidation of hydroxylamine are described. Cyclic voltammograms of the CGA–MWCNT–GCE indicate a pair of well-defined and nearly reversible redox couple with the surface confined characteristics at a wide pH range of 2.0–12.0. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of CGA adsorbed on MWCNT were calculated 0.48 and 44 ± 2 s?1 respectively. The CGA–MWCNT–GCE shows a dramatic increase in the peak current and/or a decrease in the overvoltage of hydroxylamine electrooxidation in comparison with that seen at a CGA modified GCE, MWCNT modified GCE and activated GCE. The kinetic parameters of electron transfer coefficient, α, the heterogeneous electron transfer rate constant, k′, and exchange current, i0, for oxidation of hydroxylamine at the modified electrode surface were determined using cyclic voltammetry. Four linear calibration ranges and high repeatability with relative standard deviation of 4.6%, for a series of four successive measurements in 17.7 μM hydroxylamine, are obtained at the CGA–MWCNT–GCE using an amperometric method. Finally, the modified electrode was successfully used for determination of spiked hydroxylamine in two water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号