首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In manufacturing sector,hard turning has emerged as a vital machining process for cutting hardened steels.Besides many advantages of hard turning operations,one has to implement to achieve close tolerances in terms of surface finish,high product quality,reduced machining time,low operating cost and environmental friendly characteristics.In the study,three dimensional(3D) computer aided engineering(CAE) based simulation of hard turning by using commercial software DEFORM 3D has been compared to the experimental results of stresses,temperatures and tool forces in machining of AISI D3 and AISI H13 steel using mixed ceramic inserts(CC6050).In the following analysis,orthogonal cutting models are proposed,considering several processing parameters such as cutting speed,feed and depth of cut.An exhaustive friction modelling at the tool-work interface is carried out.Work material flow around the cutting edge is carefully modelled with adaptive re-meshing simulation capability of DEFORM 3D.The process simulations are performed at constant feed rate(0.075 mm/r) and cutting speed(155 m/min),and analysis is focused on stresses,forces and temperatures generated during the process of machining.Close agreement is observed between the CAE simulation and experimental values.  相似文献   

2.
EN-31 (AISI 52100, hardness 55 HRC) is one of the difficult-to-cut steel alloys and it is commonly used in shafts and bearings. Nowadays, it is becoming a challenge to the cutting tool material for economical machining of extremely tough and hard steels. In general, CBN and PCBN tools are used for machining hardened steel. However, machining cost using these tools becomes higher due to high tool cost. For this purpose, carbide tool using selective coatings is the best substitute having comparable tool life, while its cost is approximately one-tenth of CBN tool. In this work, the newly developed second-generation TiAlxN super nitride (i.e., HSN2) is selected for PVD coating on carbide tool insert and further characterized using thermogravimetric analysis and differential scanning calorimetry for oxidation and thermal stability at high temperature. Later, HSN2-coated carbide inserts are successfully tested for their sustainability to expected tool life for turning of AISI 52100 steel. In the present study, forces, surface finish, and tool wear are used as a measure to appraise the performance of hard turning process. Experimentally, it is found that speed, feed rate, and depth of cut have considerable impact on forces, insert wear, and surface roughness of the machined surface.  相似文献   

3.
Process planning and optimization is crucial to help establish the economic and quality viability of hard turning processes with the presence of a wide spectrum of tooling and process parameters. A systematic methodology is discussed in this paper to design the optimal tool geometry and cutting conditions for hard turning, incorporating the consideration of part finish, tool wear, and material removal rate. Experimental demonstration of the optimization scheme is presented at two levels: the first level is to validate the process prediction results and the second is to validate the optimization results. Hardened AISI 1053 steel was selected as the workpiece material in this study and its material property related parameters, including the Johnson-Cook constants and wear coefficients, were determined based on the machining tests. It is seen that the cutting force and tool wear progression agrees well with the predictions from 3-D oblique cutting model, and the machined surface roughness can be predicted with a surface kinematic model incorporating the plowing effect. The experimental results also showed that the process configuration as derived from the analytical optimization procedure lends itself to superior results in comparison to other experimental results under non-optimal configurations.  相似文献   

4.
Minimum quantity lubrication (MQL) is a replacement for dry machining in which a minimum quantity of lubricant fluid is mixed up with compressed air and sprayed periodically on the machining area. In this research the effects of different parameters on the MQL turning of AISI 1045 steel have been investigated to evaluate the cutting force, surface roughness, and tool wear in comparison with the wet and dry machining. The research is aimed to study the effect of the MQL nozzle position, workpiece hardness and tool type on the output parameters. During MQL machining experiments, the nozzles were placed in three different arrangements relative to the tool to investigate the effect of the nozzle position. The effect of workpiece hardness and tool type were also studied experimentally for different lubrication conditions. The results indicated that the MQL system significantly increases the cutting efficiency in AISI 1045 steel machining. The experiments results have also confirmed a significant influence of the nozzle position, workpiece hardness, and tool type on the outputs. Machining with MQL is also beneficial to the environment and machine tool operator health as lubricant consumption during operation with MQL is 7-fold lower than in the conventional system.  相似文献   

5.
The investigation of low cost uncoated and coated carbide insert in the hard turning of hardened AISI D2 steel (≥55 HRC) will definitely open up a new arena as an economical alternative suitable to industrial machining sectors. Thus, this paper reports the comparative machinability assessment for the hard turning of AISI D2 steel ((55 ±1) HRC) by coated and uncoated carbide insert in a dry environment. Micro hardness and abrasion tests were carried out to assess resistance capability against wear. The above test results confirmed the greater wear resistance ability of Al2O3 coated carbide insert over uncoated carbide. Based on the extensive investigation of comparative machinability, the coated carbide insert (TiN-TiCN-Al2O3) outperformed the uncoated carbide insert with regard to surface roughness, flank wear, chip-tool interface temperature, and chip morphology. Abrasion and diffusion were observed as the principal tool wear mechanisms in the investigated range. The uncoated carbide failed completely due to the severe chipping and quick dulling of the cutting edge, which led to its unsuitability for machining hardened steel. The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-018-0215-z  相似文献   

6.
Turning of hard materials usually presents poor machinability. However, for high productivity, it is desirable to employ turning of hard materials rather than grinding. In this work, turning of hardened 16MnCrS5 steel with hardness of 43 HRC was explored to judge machining performance with plain and wide-groove-type chip-breaking TiC-coated carbide inserts under dry and wet environmental conditions, different cutting velocity, and feed. Tool wear tests were also done in dry and wet conditions. Satisfactory tool performance was observed under wet condition using TiC-coated plain and wide-groove carbide inserts even at 268 m/min cutting velocity, when dry machining could not be done effectively.  相似文献   

7.
Modeling of Residual Stress Profile in Finish Hard Turning   总被引:1,自引:0,他引:1  
Mechanical components shaped by hard turning processes are commonly used under high stress and repeated loading conditions. The physical strength and fatigue life of these components is known to be significantly affected by the residual stress distributions induced by finish hard turning. A thorough understanding of the residual stress profile including both magnitude and direction along the depth of the hard turned workpiece is therefore very important to maximize component life and improve its performance. Many studies have been conducted to determine the effect of cutting tool geometry, cutting parameters, and workpiece material on residual stress distribution in hard turning. However, due to the complexity of hard turning processes, the effect factors considered in these studies are typically insufficient. Knowledge of the most important effect factors such as cooling type, insert grade and tool geometry, tool wear, cutting conditions, and workpiece material has been limited. Very few analytical models are available and accurate enough to predict residual stress profiles in hard turning. In this paper, a series of experiments were designed based on the factorial robust engineering method to explore the full factors affecting the residual stress profiles, and an intelligent model based on back-propagation neural network (BPNN) was developed to predict circumferential and longitudinal residual stress profiles in hard turning. The prediction results match the experimental results well, and much higher performance relative to conventional linear regression method has been achieved.  相似文献   

8.
In this paper, experimental investigations are carried out by end milling process on hardened tool steel, Impax Hi Hard (Hardness 55 HRC) a newly developed tool steel material used by tool and die making industries. Experiments are performed with an aim to study performance investigations of machining parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses viz. volume of material removed, tool wear, tool life and surface finish to evaluate the performance of PVD coated carbide inserts and ball end mill cutters. It has been observed through scanning electron microscope, X-ray diffraction technique (EDX) that chipping and adhesion are active tool wear mechanisms and saw-toothed chips are formed while machining of Impax Hi Hard steel. It is also noticed out that tool life is not enhanced while machining with minimum quantity lubricant than dry machining. From the investigations, it is observed that hard machining can be considered as an alternative to grinding and EDM, traditional methods of machining difficult-to-machine materials i.e. hardened steel with hardness greater than 50 HRC with a scope of improved productivity, increased flexibility, decreased capital expenses and reduced environmental waste.  相似文献   

9.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

10.
This study investigated the cutting performance of coated CC6050 and uncoated CC650 mixed ceramics in hard turning of hardened steel. The cutting performance was mainly evaluated by cutting force components and tool wear. The planning of experiments was based on Taguchi’s L36 orthogonal array. The response surface methodology and analysis of variance were used to check the validity of multiple linear regression models and to determine the significant parameter affecting the cutting force components. Tool wear progressions and, hence, tool life, different tool wear forms and wear mechanisms observed for tools coated with TiN and uncoated mixed ceramics are presented along with the images captured by digital and electron microscope. Experimental observations indicate higher tool life with uncoated ceramic tools, which shows encouraging potential of these tools to hard turning of AISI H11 (50 HRC). Finally, tool performance indices are based on units which characterise machined cutting force components and wear when hard turning.  相似文献   

11.
Abstract

Microstructural phase transformations, commonly known as white layer formation in hard turned steel components, have in recent times become an interesting research topic in machining as they are related to the surface integrity and functional performance of components. Three main theories have been proposed to justify the mechanisms of white layer formation: (1) rapid heating and quenching; (2) severe plastic deformation; and (3) surface reaction with the environment. Coolant application also affects the surface microstructural alterations resulting from machining operations, which have a significant influence on product performance and life. The present work aims at understanding the effects of cryogenic coolant application on the machined surface alterations during machining of hardened AISI 52100 bearing steel. Experiments were performed under dry and cryogenic cooling conditions using cubic boron nitride tool inserts with varying initial work material hardness, tool shape, cutting speed and feedrate. Optical and scanning electron microscopes (SEM) were used to analyse the affected layer in the machined subsurface, while X-ray diffraction technique was utilised to investigate the microstructural phase composition. The experimental results prove that the microstructural phase changes are heavily influenced by the cutting process parameters and the use of cryogenic cooling, in some cases leading to the total removal of martensite.  相似文献   

12.
In this paper, a 2D orthogonal cutting of hardened AISI52100 steel is developed to investigate the influence of cutting process parameters (CPP) on white layer (WL) thickness. A finite element model (FEM) based on the phase transformation mechanism and takes into account the mechanical effects is adopted to predict the WL depth. Several numerical simulations are performed in various conditions of tool geometry, tool flank wear, material properties, and cutting conditions. The predicted results of cutting forces, chip morphologies, and WL depth are physically consistent with the previous experimental investigations. The numerical results prove that formation of thick WLs is unavoidable in all cases, except for low workpiece hardness, very thin WLs are noticed. The results also confirm that the WL thickness depends on all used CPP. In particular, the cutting speed, feed, tool flank wear, and workpiece hardness are the most influencing parameters.  相似文献   

13.
Metal Cutting of Hard Alloys – Turning and Grinding. Part II: Turning of Hard Alloys Turning tests were carried out on selected hard alloys on iron (FeCr12C2.1, FeCr13Nb9MoTiC2.3, FeCr14Mo5WVC4.2) and cobalt basis (CoCr29W5C1.3) in a cutting speed range of between vc = m/min and 180 m/min. Polycrystalline cubic boron nitride (PCBN) turned out to be a suitable tool material. Subsequent examinations focused on evaluating the mechanisms of chip formation, cutting tool wear and surface integrity of the workpiece. During turning of hard alloys the formation of chips is primarily influenced by the ductility and fracture toughness of the work material. While a ductile matrix enables the formation of highly deformable chips, the chips stemming from martensitically hardened alloys show low deformation. As the cutting depth increases shear and segmented chips are chiefly produced. Type and arrangement of the hard phases play a significant role. Adhesion is the main wear mechanism impacting the cutting face of the tool. Particularly, strong adhesion effects will arise during the machining of the work hardening alloy on cobalt basis. A high cobalt content of the metallic bonding phase of the PCBN cutting tool appears to be a disadvantage with this type of work material. When machining alloys on iron basis adhesion is promoted by the mechanical linking of alloy-specific hard phases to the cutting material binder. Abrasion primarily acts on the flank. The hard carbides of the work material produce typical grooves in the cutting edge zone of the tool. The flank wear increases as the carbide content goes up. As the cutting speed rises the tool wear ascertained passes through a minimum. Whereas the formation of built-up cutting edges predominates at lower speeds, a thermal softening of the PCBN binder takes place and is dominating at high cutting speeds. The location of the wear minimum depends not only on the cutting temperature but also on the strain hardening capability of the metal matrix. Raising the cutting speed will cause the cutting force to continuously reduce. The highest cutting forces are found for the Co-based alloy. The passive forces develop in line with cutting tool wear and vary with content and hardness of the hard phases involved. The selected process parameters also affect the surface near zone. With low cutting speeds and process temperatures the surface is mainly stressed mechanically. Carbides break or detach from the surrounding matrix. If the cutting speed and process temperature are increased the eutectic carbides (M7C3) are deformed together with the metal matrix. Microhardness profiles are indicative of near-surface strain-hardened zones after cutting of the Co-based alloy. Fe-based matrices do not show hardness changes worth mentioning. Although there are no new hardened zones noticeable even at maximum cutting speed, the matrix is nevertheless influenced thermally so that residual stresses will develop in the machined surface layer. In the lower cutting speed range the surface quality is characterized by flakes and material squeezing (Co-based alloy) and by spalling (Fe-based alloy). Only if the cutting speed is raised, a minor roughness is detected due to a potential deformation of eutectic hard phases.  相似文献   

14.
Analysis of white layers formed in hard turning of AISI 52100 steel   总被引:7,自引:0,他引:7  
The formation mechanisms and properties of white layers produced in machining of hardened steels are not clearly understood to date. In particular, detailed analysis of their structure and mechanical properties is lacking. This paper investigates the differences in structure and properties of white layers formed during machining of hardened AISI 52100 steel (62 HRC) at different cutting speeds. A combination of experimental techniques including transmission electron microscopy (TEM), X-ray diffraction (XRD), and nano-indentation are used to analyze the white layers formed. TEM results suggest that white layers produced at low-to-moderate cutting speeds are in large part due to grain refinement induced by severe plastic deformation, whereas white layer formation at high cutting speeds is mainly due to thermally-driven phase transformation. The white layers at all speeds are found to be comprised of very fine (nano-scale) grains compared to the bulk material. XRD-based residual stress and retained austenite measurements, and hardness data support these findings.  相似文献   

15.
This experimental study is conducted to determine statistical models of cutting forces in hard turning of AISI H11 hot work tool steel (∼ 50 HRC). This steel is free from tungsten on Cr–Mo–V basis, insensitive to temperature changes and having a high wear resistance. It is employed for the manufacture of highly stressed diecasting moulds and inserts with high tool life expectancy, plastic moulds subject to high stress, helicopter rotor blades and forging dies.  相似文献   

16.
The paper presents some findings of the investigation of finish turning of KhVG hardened steel (60–62 HRC) using a cutting tool with an insert made of a cubic boron nitride based composite (cBN-Si3N4 system). The influence of machining process variables on the cutting force components, vibrations, and machined surface roughness is clarified. The authors propose some practical recommendations of how to choose machining modes and conditions.  相似文献   

17.
This work aims at studying the machining characteristics of high-strength materials using carbide cutting tool inserts at different cutting conditions. This is an essential step in building up an accurate machining information system. The tested material is high-strength stainless steel of the AISI 420 type. Machining tests were carried out using orthogonal cutting conducted to investigate the machining characteristics for high-strength stainless steel AISI 420 at different cutting conditions and tool rake angles. This assessment is achieved by investigating the effect of cutting parameters (cutting speed, feed, depth of cut, and tool geometry) on cutting forces, specific cutting energy, shear angle, coefficient of friction, shear stress, shear strain, and shear strain rate. Empirical equations and a correlation for the behavior of each of the output responses were investigated as a function of the independent variables. Main effect and interaction plot were presented for the most influential factors affecting the main cutting force and the power consumed.  相似文献   

18.
This paper evaluates the performance of nanofluid using multi-walled carbon nanotubes (MWCNT) in distilled water and sodium dodecyl sulfate surfactant for turning operation on EN 31 material. Turning was performed without any fluid, with conventional, mineral oil–based cutting fluid, and with nanofluid. The flow rates of both fluids were limited to 1?L/h and these fluids were applied at the tool tip through gravity feed. Cutting forces, wear on tool, and surface finish on workpiece were measured as responses while turning under the three conditions. The responses obtained in three different conditions of turning are then compared. It is found that application of MWCNT-based nanofluid resulted in 49% and 30% lesser tool wear than machining without any fluid and machining with mineral oil–based fluid, respectively. The use of nanofluid also resulted in 5–8% lesser cutting force and 9–22% better surface finish of the workpiece as compared with conventional cutting fluid. Thus, MWCNT-based nanofluid performed better than the conventional, oil-based cutting fluid for turning of EN 31 bars.  相似文献   

19.
Turning and Milling of Powder Metallurgical Hard Alloys for Tools in Hot Working Applications Hard metals are high wear resistant materials. The microstructure of these composites consists of hard phases which are embedded in a metal matrix. The high hardness and the high content of the hard phases lead to a difficult machining of these materials. The present study investigates the turning and milling of D3 cold work steel (X210 Cr 12) and the powder metallurgical Fe‐based alloys ASP60 and ASP23 + WC/W2C. The cutting tool materials were polycrystalline cubic boron nitrides (CBN) and ceramic inserts. The machining process could be judged by means of tool wear and machining quality (surface roughness and changes in the surface near zone). The investigations illustrate that the machinability of the different hard metals depends on the cutting speed and the cutting tool material.  相似文献   

20.
 Conventional machining prolongs tool life by using cutting oils to cool the metal cutting process. Unfortunately, the cutting fluid contaminates the environment, and endangers the health of humans. Cryogenic machining offers an environmentally safe alternative to conventional machining by using liquid nitrogen, which can be naturally recycled. However, for the cryogenic machining process to be effective and economical, manufacturers must select the correct cooling approach. This paper describes our experimental study to investigate the cryogenic properties of some common cutting tool materials and five workpiece materials of industrial interest: low carbon steel, AISI 1010, high carbon steel AISI 1070, bearing steel AISI 52100, titanium alloy Ti-6Al-4V, and cast aluminum alloy A390. The paper addresses the major aspects of heat generated in metal cutting in terms of its effects on chip formation, tool wear, and on the functional integrity of the machined component. The paper then discusses the cooling strategies for cryogenic machining each material based on the thermal effects and material properties. The investigators conclude that the cooling approach must be finely adjusted for different materials to obtain the optimum effectiveness in cryogenic machining. The goal of our study is to provide a basis for designing the cryogenic machining system. Received: 25 November 1998 / Accepted: 12 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号