首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以SnCl2为原材料,采用化学还原和葡萄糖水热法制备了Sn/C复合材料.采用XRD,SEM和EDS对复合材料进行了表征,并对材料的电化学性能进行了测试.结果表明,该复合材料为300~700nm大小的球形核壳结构,核为金属锡,壳为碳;复合材料的首次脱锂比容量为700mAh/g,循环40次后比容量稳定在450mAh/g,循环300次后仍保持约400mAh/g的比容量,具有优异的循环性能.  相似文献   

2.
采用XRD,SEM,IR光谱和物理测试等方法,研究了碳纳米粉的结构与性能及电化学性能。结果表明碳纳米粉的粒度为30nm,具有石墨结构,碳纳米粉的首次放电比容量为391.5mAh/g,首次循环可逆比容量是336.0mAh/g,不可逆容量仅是21.9mAh/g。碳纳米粉的循环伏安曲线的峰形与峰位基本相同,没有还原电流峰。结果显示碳纳米粉适用于做锂离子电池负极材料。  相似文献   

3.
用碳热还原法制备了Sn-MCMB复合材料,通过XRD、SEM、恒流充放电循环和慢速扫描循环伏安(CV)等方法对其电化学嵌脱锂性能做了研究。结果表明:SnO2被MCMB还原成金属Sn圆球颗粒,吸附在McMB上的球径平均尺寸为500nm,而未吸附的为15μm,均匀分散在MCMB微球之间。该材料的首次嵌脱锂比容量分别可以达到892和657mAh/g,库仑效率为73%,循环14周以后的脱锂比容量为366mAh/g。  相似文献   

4.
张龙飞  江琦 《材料导报》2017,31(Z1):164-168, 177
石墨烯复合材料因具有高比表面积、高比容量、优异的导电性、显著的化学稳定性,在锂离子电池领域具有巨大的应用前景。在负极复合材料中,石墨烯不仅可以形成导电网络提升复合材料的导电性能,而且还可以缓冲材料在充放电过程中的体积效应,提高了材料的倍率性能和循环寿命,为设计大容量高稳定性的锂离子电池提供了理论保证。因此制备不同组成和结构的石墨烯复合材料是一个非常有价值的课题。对近年来国内外运用不同方法制备不同组成和结构的石墨烯复合材料的研究结果做了综合评述和展望。  相似文献   

5.
用炭热还原方法制备了Sn-SnOx/Carbon 复合材料,二氧化锡(SnO2)和羧甲基纤维素钠(CMCNa)的混合物在450℃炭化作用下同时生成了炭和SnSnO2纳米颗粒.应用XRD、SEM/EDS、BET和电化学方法对获得的复合材料进行了表征和性能研究.SEM观测结果证明Sn-SnO2纳米颗粒很好地分散在生成的炭复...  相似文献   

6.
以SiO、丁苯橡胶(SBR)及石墨烯为原料,通过高温歧化、机械球磨、喷雾干燥和高温热解制备电化学性能优异的锂离子电池SiO_x/C/石墨烯复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、颗粒形貌及电化学性能等进行表征。结果表明,热解后的SiO_x/C/石墨烯复合负极材料的首次放电容量为1 807mAh/g,100次循环后,可逆容量高达1 349mAh/g,库伦效率为99.1%,循环稳定性远高于SiO_x/C和SiO_x/C/graphene前驱体,具有良好的倍率性能。  相似文献   

7.
综述了锂电池用Sn基负极材料近年来的发展现状,着重讨论了Sn基氧化物、Sn基复合氧化物、Sn基合金以及Sn基复合物等Sn基负极材料的制备方法、性能特点、存在问题以及改善途径。指出单一方法难以全面改善Sn基负极材料的性能,综合运用结构优化、成分控制、掺入基质以及优化还原剂、黏合剂和电解质添加剂等途径才能更好地改善Sn基负极材料的电化学性能。最后,对Sn基负极材料的研究趋势进行了展望,并指出以石墨烯为基质的Sn基复合材料是今后研究的重要方向。  相似文献   

8.
负极理论容量最大的硅在充放电过程中,体积过度膨胀粉化导致容量衰减快,成为其作为商用负极材料的最大障碍.碳材料不仅具有一定的电化学活性,结构也较稳定,可以作为硅电极的"缓冲基体";具有高容量和优良循环性能的硅-碳复合负极材料已经成为该领域的研究热点.按照碳材料的分类,评述了Si/C复合电极材料,并初步展望了该领域的研究方向.  相似文献   

9.
具有高理论比容量和低操作电压的锡及其氧化物负极材料,在当前对锂离子电池高能量密度和高功率密度的日益迫切的需求下备受关注。但其在充放电过程中的巨大体积效应导致其循环性能较差,严重阻碍了锡基负极材料的实用化。在改善循环性能的诸多方法中,结合纳米化和微观结构设计来制备纳米结构Sn/C复合负极材料是一种较好的改性思路。按照锡与碳的复合形式,可将其分为表面附着型、核壳包覆型、弥散包覆型等基本构型和其他复杂结构。本文按此分类方法,从制备工艺、微观结构、电化学性能等方面对各种Sn/C复合负极材料的研究进展进行了评述,并提出将各种基本构型相结合来制备具有多级复合纳米结构的Sn/C复合材料,同时简化制备工艺,对于其性能的进一步提升和实用化将具有重要的意义。  相似文献   

10.
锂离子电池 Si-Mn/C负极材料的电化学性能   总被引:6,自引:0,他引:6  
利用机械球磨法得到Si和Mn原子比为3:5的复合材料,将此材料与20 wt%的石墨混合球磨得到Si3Mn5/C复合材料.利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析材料的物相和电极的微观结构.结果表明:所得材料中没有Si-Mn二元新相的生成,材料的颗粒尺寸为0.5—2.0μm.碳的加入抑制了活性中心Si在循环过程中的较大结构变化,且Si—Mn复合物颗粒均匀地分散在碳的网格中,增加了复合材料的电接触.合成样品的电化学测试表明, 石墨的添加提高了Si-Mn复合材料的可逆容量和循环性能. Si-Mn/C复合物的首次可逆容量为347mAh·g-1,充放电效率为70%.进而经200℃热处理的Si-Mn/C电极的首次可逆容量为 463mAh·g-1,充放电效率为70%.在30个循环后复合材料仍保持426mAh·g-1的可逆容量, 充放电效率稳定在97%以上.  相似文献   

11.
以二水乙酸锌、一缩二乙二醇为原料,通过溶胶-凝胶法制备出氧化锌/螺旋纳米碳纤维(ZnO/HCNFs)复合材料。使用X射线衍射仪(XRD)、热重分析仪(TG)和扫描电子显微镜(SEM)等表征手段研究了ZnO/HCNFs复合材料的形貌结构,通过恒流充放电测试仪对材料的电化学性能进行测试。结果表明:ZnO颗粒均匀负载于HCNFs表面,粒径约为20~50nm。ZnO/HCNFs复合材料在200mA/g的电流密度下,其首次充放电比容量分别达到977mAh/g与788mAh/g,库仑效率为81%,经过100次循环以后,容量仍保持在501mAh/g,电化学性能较优异。  相似文献   

12.
以石墨为母体的硅碳核壳复合负极材料的制备及性能研究   总被引:1,自引:0,他引:1  
李敏  侯贤华  王洁  张苗  胡社军  刘祥 《功能材料》2013,(19):2828-2832
通过喷雾干燥和高温热解法,成功制备了不同有机碳源包覆的硅碳核壳复合负极材料。用X射线衍射(XRD)和扫描电镜(SEM)表征了材料的组成和形貌;用恒电流充放电(CC)、循环伏安(CV)和交流阻抗(EIS)表征了硅碳核壳复合材料的电化学性能,测试结果表明柠檬酸、酚醛树脂和葡萄糖作为有机碳源包覆硅碳复合材料的电化学性能相对于传统石墨材料都有明显改善,而葡萄糖为有机碳源制备的硅碳核壳复合材料具有最高的首次效率和容量保持率。  相似文献   

13.
通过水热法制备了石墨烯包覆量不同的石墨烯/富锂三元正极复合材料。采用X射线衍射仪、扫描电子显微镜和电化学交流阻抗等对包覆后富锂三元正极复合材料的物相结构、形貌及电化学性能进行了研究。结果表明:石墨烯包覆量为2%(质量分数)时,包覆效果较好,石墨烯/富锂三元正极复合材料首次库仑效率为89.6%,比富锂三元正极材料提高了17.16%,放电比容量为226.41mAh/g,比原材料提高了21.38mAh/g;以0.5C循环100次后石墨烯/富锂三元正极复合材料放电比容量可保持在154mAh/g,容量保持率为88%,比富锂三元正极材料提高了5.3%;石墨烯/富锂三元正极复合材料阻抗为75Ω,比富锂三元正极材料阻抗低50Ω。  相似文献   

14.
利用共沉淀法制备了铜掺杂的磷酸铁锂正极材料。对产物进行了XRD、SEM、FT-IR、DSC表征分析。结果表明Cu掺杂的LiFePO4具有与LiFePO4相同的单一橄榄石型晶体结构,样品粒径在0.4~20μm左右,形貌规整,粒径分布均匀。0.2C倍率下LiFePO4/C的充放电比容量达到142和144mAh/g,而LiCuxFe1-xPO4/C在充放电的比容量分别为150.1和151mAh/g。LiCuFePO4/C循环40圈后比容量保持率为97.8%,而LiFePO4/C的保持率仅为82.1%。  相似文献   

15.
采用化学法合成了聚苯胺/活性炭(PANi/C)和聚苯胺/石墨(PANi/G)复合材料,并研究了其电化学性能.在合成过程中,加入石墨或活性炭均可提高PANi的产率,尤其加入活性炭.所获得的PANi/C、PANi/G复合物的电导率高于聚苯胺与活性炭(PANi+C)、聚苯胺与石墨(PANi+G)混合物及PANi的电导率,其中加入石墨的PANi/G复合物电导率明显增大.以PANi、PANi/G和PANi/C作为Zn-PANi二次电池阴极材料,其放电比容量分别为74.1 mAhg-1、101.3 mAhg-1和118.7mAhg-1,电池库伦效率达90-100%.  相似文献   

16.
Silicon-based material is considered to be one of the most promising anodes for the next-generation lithium-ion batteries (LIBs) due to its rich sources, non-toxicity, low cost and high theoretical specific capacity. However, it cannot maintain a stable electrode structure during repeated charge/discharge cycles, and therefore long cycling life is difficult to be achieved. To address this problem, herein a simple and efficient method is developed for the fabrication of an integrated composite anode consisting of SiO-based active material and current collector, which exhibits a core–shell structure with nitrogen-doped carbon coating on SiO/P micro-particles. Without binder and conductive agent, the volume expansion of SiO active material in the integrated composite anode is suppressed to prevent its pulverization. At a current density of 500 mA·g−1, this integrated composite anode exhibits a reversible specific capacity of 458 mA·h·g−1 after 200 cycles. Furthermore, superior rate performance and cycling stability are also achieved. This work illustrates a potential method for the fabrication of integrated composite anodes with superior electrochemical properties for high-performance LIBs.  相似文献   

17.
TiO2/C nanospheres with diameter of 300–400 nm were synthesized by controlled thermal decomposition of titanium glycolate spheres in inert atmosphere. The effect of the calcination temperature and atmosphere on the structure and composition of the product are investigated. The products obtained by calcination of the precursor in nitrogen at 500°C consist of anatase and rutile nanoparticles, and amorphous carbon that is in situ generated from the organic components of glycolate precursor. When used as anode material for lithium-ion batteries, the as-prepared TiO2/C nanocomposite delivers a capacity of 166 mAh/g after 250 charge/discharge cycles at a current rate of 0.2 C and give a good rate capability. The native carbon not only improves the local conductivity but also prevents the aggregation and growth of TiO2 nanoparticles during calcination, allowing efficient electronic conductivity and Li ion diffusion.  相似文献   

18.
以沥青为软碳原料(质量分数为10%、20%、30%、50%),通过高温热解法成功合成了不同软碳含量的碳/硅(C/Si)复合材料。实验结果表明,软碳材料的引入能有效抑制Si基材料的体积效应和提高其电子电导率,从而在极大的改善负极材料循环性能的同时,还提高了其比容量。其次,通过系统研究不同C含量的C/Si复合材料性能,发现最佳的沥青加入量为20%。该条件所合成样品具有高达2356.7 mAhg-1的首次充电比容量和86.6%的库伦效率。经过50次循环后依然有726.4 mAhg-1的充电比容量,远高于工业化石墨负极材料,应用前景广阔。本研究还详细研究和讨论了软碳材料的形成机制以及不同软碳含量对材料形貌的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号