首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article comprises 4 yr of field experiments on methane (CH4) emissions from rice fields conducted at Los Baños, Philippines. The experimental layout allowed automated measurements of CH4 emissions as affected by water regime, soil amendments (mineral and organic), and cultivars. In addition to emission records over 24 h, ebullition and dissolved CH4 in soil solution were recorded in weekly intervals. Emission rates varied in a very wide range from 5 to 634 kg CH4 ha–1, depending on season and crop management. In the 1994 and 1996 experiments, field drying at midtillering reduced CH4 emissions by 15–80% as compared with continuous flooding, without a significant effect on grain yield. The net impact of midtillering drainage was diminished when (i) rainfall was strong during the drainage period and (ii) emissions were suppressed by very low levels of organic substrate in the soil. Five cultivars were tested in the 1995 dry and wet season. The cultivar IR72 gave higher CH4 emissions than the other cultivars including the new plant type (IR65597) with an enhanced yield potential. Incorporation of rice straw into the soil resulted in an early peak of CH4 emission rates. About 66% of the total seasonal emission from rice straw-treated plots was emitted during the vegetative stage. Methane fluxes generated from the application of straw were 34 times higher than those generated with the use of urea. Application of green manure (Sesbania rostrata) gave only threefold increase in emission as compared with urea-treated plots. Application of ammonium sulfate significantly reduced seasonal emission as compared with urea application. Correlation between emissions and combined dissolved CH4 concentrations (from 0 to 20 cm) gave a significant R2 of 0.95 (urea + rice straw), and 0.93 (urea + Sesbania), whereas correlation with dissolved CH4 in the inorganically fertilized soils was inconsistent. A highly significant correlation (R2 =0.93) existed between emission and ebullition from plots treated with rice straw. These findings may stimulate further development of diagnostic tools for easy and reliable determination of CH4 emission potentials under different crop management practices.  相似文献   

2.
Methane (CH4) emissions from rice fields were monitored in Hangzhou, China, from 1995 to 1998 by an automatic measurement system based on the "closed chamber technique." The impacts of water management, organic inputs, and cultivars on CH4 emission were evaluated. Under the local crop management system, seasonal emissions ranging from 53 to 557 kg CH4 ha–1 were observed with an average value of 182 kg CH4 ha–1. Methane emission patterns differed among rice seasons and were generally governed by temperature changes. Emissions showed an increasing trend in early rice and a decreasing trend in late rice. In a single rice field, CH4 emissions increased during the first half of the growing period and decreased during the second half. Drainage was a major modifier of seasonal CH4 emission pattern. The local practice of midseason drainage reduced CH4 emissions by 44% as compared with continuous flooding; CH4 emissions could further be reduced by intermittent irrigation, yielding a 30% reduction as compared with midseason drainage. The incorporation of organic amendments promoted CH4 emission, but the amount of emission varied with the type of organic material and application method. Methane emission from fields where biogas residue was applied was 10–16% lower than those given the same quantity (based on N content) of pig manure. Rice straw applied before the winter fallow period reduced CH4 emission by 11% as compared with that obtained from fields to which the same amount of rice straw was applied during field preparation. Broadcasting of straw instead of incorporation into the soil showed less emission (by 12%). Cultivar selection influenced CH4 emission, but the differences were smaller than those among organic treatments and water regimes. Modifications in water regime and organic inputs were identified as promising mitigation options in southeast China.  相似文献   

3.
Methane (CH4) emission rates were recorded automatically using the closed chamber technique in major rice-growing areas of Southeast Asia. The three experimental sites covered different ecosystems of wetland rice--irrigated, rainfed, and deepwater rice--using only mineral fertilizers (for this comparison). In Jakenan (Indonesia), the local water regime in rainfed rice encompassed a gradual increase (wet season) and a gradual decrease (dry season) in floodwater levels. Emission rates accumulated to 52 and 91 kg CH4 ha–1 season–1 corresponding to approximately 40% of emissions from irrigated rice in each season. Distinct drainage periods within the season can drastically reduce CH4 emissions to less than 30 kg CH4 ha–1 season–1 as shown in Los Baños (Philippines). The reduction effect of this water regime as compared with irrigated rice varied from 20% to 80% from season to season. Methane fluxes from deepwater rice in Prachinburi (Thailand) were lower than from irrigated rice but accumulated to equally high seasonal values, i.e., about 99 kg CH4 ha–1 season–1, due to longer seasons and assured periods of flooding. Rice ecosystems with continuous flooding were characterized by anaerobic conditions in the soil. These conditions commonly found in irrigated and deepwater rice favored CH4 emissions. Temporary aeration of flooded rice soils, which is generic in rainfed rice, reduced emission rates due to low CH4 production and high CH4 oxidation. Based on these findings and the global distribution of rice area, irrigated rice accounts globally for 70–80% of CH4 from the global rice area. Rainfed rice (about 15%) and deepwater rice (about 10%) have much lower shares. In turn, irrigated rice represents the most promising target for mitigation strategies. Proper water management could reduce CH4 emission without affecting yields.  相似文献   

4.
Methane (CH4) emissions were determined from 1993 to 1998 using an automated closed chamber technique in irrigated and rainfed rice. In Jakenan (Central Java), the two consecutive crops encompass a gradient from low to heavy rainfall (wet season crop) and from heavy to low rainfall (dry season crop), respectively. Rainfed rice was characterized by very low emission at the onset of the wet season and the end of the dry season. Persistent flooding in irrigated fields resulted in relatively high emission rates throughout the two seasons. Average emission in rainfed rice varied between 19 and 123 mg CH4 m–2 d–1, whereas averages in irrigated rice ranged from 71 to 217 mg CH4 m–2 d–1. The impact of organic manure was relatively small in rainfed rice. In the wet season, farmyard manure (FYM) was completely decomposed before CH4 emission was initiated; rice straw resulted in 40% increase in emission rates during this cropping season. In the dry season, intensive flooding in the early stage promoted high emissions from organically fertilized plots; seasonal emissions of FYM and rice straw increased by 72% and 37%, respectively, as compared with mineral fertilizer. Four different rice cultivars were tested in irrigated rice. Average emission rates differed from season to season, but the total emissions showed a consistent ranking in wet and dry season, depending on season length. The early-maturing Dodokan had the lowest emissions (101 and 52 kg CH4 ha–1) and the late-maturing Cisadane had the highest emissions (142 and 116 kg CH4 ha–1). The high-yielding varieties IR64 and Memberamo had moderately high emission rates. These findings provide important clues for developing specific mitigation strategies for irrigated and rainfed rice.  相似文献   

5.
Methane (CH4) emissions were measured with an automated system in Central Luzon, the major rice producing area of the Philippines. Emission records covered nine consecutive seasons from 1994 to 1998 and showed a distinct seasonal pattern: an early flush of CH4 before transplanting, an increasing trend in emission rates reaching maximum toward grain ripening, and a second flush after water is withdrawn prior to harvesting. The local practice of crop management, which consists of continuous flooding and urea application, resulted in 79–184 mg CH4 m–2 d–1 in the dry season (DS) and 269–503 mg CH4 m–2 d–1 in the wet season (WS). The higher emission in the WS may be attributed to more labile carbon accumulation during the dry fallow period before the WS cropping as shown by higher % organic C. Incorporation of sulfate into the soil reduced CH4 emission rates. The use of ammonium sulfate as N fertilizer in place of urea resulted in a 25–36% reduction in CH4 emissions. Phosphogypsum reduced CH4 emissions by 72% when applied in combination with urea fertilizer. Midseason drainage reduced CH4 emission by 43%, which can be explained by the influx of oxygen into the soil. The practice of direct seeding instead of transplanting resulted in a 16–54% reduction in CH4 emission, but the mechanisms for the reducing effect are not clear. Addition of rice straw compost increased CH4 emission by only 23–30% as compared with the 162–250% increase in emissions with the use of fresh rice straw. Chicken manure combined with urea did not increase CH4 emission. Fresh rice straw has wider C/N (25 to 45) while rice straw compost has C/N = 6 to 10 and chicken manure has C/N = 5 to 8. Modifications in inorganic and organic fertilizer management and water regime did not adversely affect grain yield and are therefore potential mitigation options. Direct seeding has a lower yield potential than transplanting but is getting increasingly popular among farmers due to labor savings. Combined with a package of technologies, CH4 emission can best be reduced by (1) the practice of midseason drainage instead of continuous flooding, (2) the use of sulfate-containing fertilizers such as ammonium sulfate and phosphogypsum combined with urea; (3) direct seeding crop establishment; and (4) use of low C/N organic fertilizer such as chicken manure and rice straw compost.  相似文献   

6.
Quantitative dependence of methane emission on soil properties   总被引:3,自引:0,他引:3  
To identify the key soil parameters influencing CH4 emission from rice paddies, an outdoor pot experiment with a total of 18 paddy soils was conducted in Nanjing Agricultural University during the 2000 rice growing season. The seasonal average rate of CH4 emission for all 18 soils was 6.42±2.70 mg m–2 h–1, with a range of 1.96 to 11.06 mg m–2 h–1. Correlation analysis indicated that the seasonal average of CH4 emission was positively dependent on soil sand content and negatively on total N as well as NH4 +-N determined before rice transplanting. Copper content of soils had a significant negative impact on CH4 emission. No clear relationship existed between CH4 emission and soil carbon content. In addition, soil type cannot explain the variability in CH4 emission. Soil parameters influencing CH4 emission were different as rice growth and development proceeded. A further investigation suggested that the seasonal average rate of CH4 emission could be quantitatively determined by a linear combination of soil NH4 +-N, available copper, the ratio of available to total sulphur, and the ratio of available to total iron. Moreover, the average rates of CH4 emission in the vegetative, reproductive and ripening stages could be also respectively described by a linear combination of different soil variables.  相似文献   

7.
Methane (CH4) emissions from rice fields were determined using automated measurement systems in China, India, Indonesia, Thailand, and the Philippines. Mitigation options were assessed separately for different baseline practices of irrigated rice, rainfed, and deepwater rice. Irrigated rice is the largest source of CH4 and also offers the most options to modify crop management for reducing these emissions. Optimizing irrigation patterns by additional drainage periods in the field or an early timing of midseason drainage accounted for 7–80% of CH4 emissions of the respective baseline practice. In baseline practices with high organic amendments, use of compost (58–63%), biogas residues (10–16%), and direct wet seeding (16–22%) should be considered mitigation options. In baseline practices using prilled urea as sole N source, use of ammonium sulfate could reduce CH4 emission by 10–67%. In all rice ecosystems, CH4 emissions can be reduced by fallow incorporation (11%) and mulching (11%) of rice straw as well as addition of phosphogypsum (9–73%). However, in rainfed and deepwater rice, mitigation options are very limited in both number and potential gains. The assessment of these crop management options includes their total factor productivity and possible adverse effects. Due to higher nitrous oxide (N2O) emissions, changes in water regime are only recommended for rice systems with high baseline emissions of CH4. Key objectives of future research are identifying and characterizing high-emitting rice systems, developing site-specific technology packages, ascertaining synergies with productivity, and accounting for N2O emissions.  相似文献   

8.
A category for estimate of CH4 emission from rice paddy fields in China   总被引:2,自引:0,他引:2  
Based on key factors influencing CH4 fluxes from rice paddy fields in China, a category for estimation of total CH4 emission was suggested and the constraints for the estimation were discussed in the paper. Recently, CH4 fluxes measured in situ have been built up dramatically with the efforts of both Chinese scientists and those from abroad. After reviewing published data on CH4 fluxes from rice paddy fields, we found that although there are many other influencing factors, water regime and organic manure application are two key factors controlling CH4 emission; thus, rice paddy fields in China were classified by these two factors to estimate CH4 emission. In the suggested category, the water regime of rice paddy fields was classified into mid-season aeration at least once during the period of rice growth (MSA), continuous flooding during the period of rice growth but well-drained after rice harvest (CFD), and permanent flooding (PF) even in winter, and fertilization was classified into mineral fertilizers only (MIN), amendment with organic manures at the rate of less than or equal to 15 t ha-1 (MU < 15) and at the rate of higher than 15 t ha-1 (MU > 15), and with rice straw or other fresh plant materials (RS). Combining both water regime and fertilization together, we classified rice paddy fields in China into 12 types. The seasonal mean CH4 flux of each type of rice paddy field was calculated by the data available and showed that the lowest CH4 flux was found in the type MSA-MIN, and the highest in PF-MU > 15. The total emission estimated by this category was 8.05 Tg CH4 yr-1 with a standard deviation of 3.69 Tg CH4 yr-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The process-based crop/soil model MERES (Methane Emissions from Rice EcoSystems) was used together with daily weather data, spatial soil data, and rice-growing statistics to estimate the annual methane (CH4) emissions from China, India, Indonesia, Philippines, and Thailand under various crop management scenarios. Four crop management scenarios were considered: (a) a 'baseline' scenario assuming no addition of organic amendments or field drainage during the growing season, (b) addition of 3,000 kg DM ha–1 of green manure at the start of the season but no field drainage, (c) no organic amendments but drainage of the field for a 14-d period in the middle of the season and again at the end of the season, and (d) addition of 3,000 kg DM ha–1 of green manure and field drainage in the middle and end of the season. For each scenario, simulations were made at each location for irrigated and rainfed rice ecosystems in the main rice-growing season, and for irrigated rice in the second (or 'dry') season. Overall annual emissions (Tg CH4 yr–1) for a province/district were calculated by multiplying the rates of CH4 emission (kg CH4 ha–1 yr–1) by the area of rice grown in each ecosystem and in each season obtained from the Huke and Huke (1997) database of rice production. Using the baseline scenario, annual CH4 emissions for China, India, Indonesia, Philippines, and Thailand were calculated to be 3.73, 2.14, 1.65, 0.14, and 0.18 Tg CH4 yr–1, respectively. Addition of 3,000 kg DM ha–1 green manure at the start of the season increased emissions by an average of 128% across the five countries, with a range of 74–259%. Drainage of the field in the middle and at the end of the season reduced emissions by an average of 13% across the five countries, with a range of –10% to –39%. The combination of organic amendments and field drainage resulted in an increase in emissions by an average of 86% across the five countries, with a range of 15–176%. The sum of CH4 emissions from these five countries, comprising about 70% of the global rice area, ranged from 6.49 to 17.42 Tg CH4 yr–1, depending on the crop management scenario.  相似文献   

10.
Methane Emission from Rice Fields at Cuttack, India   总被引:1,自引:0,他引:1  
Methane (CH4) emission from rice fields at Cuttack (State of Orissa, eastern India) has been recorded using an automatic measurement system (closed chamber method) from 1995–1998. Experiments were laid out to test the impact of water regime, organic amendment, inorganic amendment and rice cultivars. Organic amendments in conjunction with chemical N (urea) effected higher CH4 flux over that of chemical N alone. Application of Sesbania, Azolla and compost resulted in 132, 65 and 68 kg CH4 ha–1 in the wet season of 1996 when pure urea application resulted in 42 kg CH4 ha–1. Intermittent irrigation reduced emissions by 15% as compared to continuous flooding in the dry season of 1996. In the wet season of 1995, four cultivars were tested under rainfed conditions resulting in a range of emissions from 20 to 44 kg CH4 ha–1. Application of nitrification inhibitor dicyandiamide (DCD) inhibited while Nimin stimulated CH4 flux from flooded rice compared to that of urea N alone. Wide variation in CH4 production and oxidation potentials was observed in rice soils tested. Methane oxidation decreased with soil depth, fertilizer-N and nitrification inhibitors while organic amendment stimulated it. The results indicate that CH4 emission from the representative rainfed ecosystem at the experimental site averaged to 32 kg CH4 ha–1 yr–1.  相似文献   

11.
Strategies used to reduce emissions of N2O and CH4 in rice production normally include irrigation management and fertilization. To date, little information has been published on the measures that can simultaneously reduce both emissions. Effects of application of a urease inhibitor, hydroquinone (HQ), and a nitrification inhibitor, dicyandiamide (DCD) together with urea (U) on N2O and CH4 emission from rice growing were studied in pot experiments. These fertilization treatments were carried out in the presence and absence of wheat straw, applied to the soil surface. Without wheat straw addition, in all treatments with inhibitor(s) the emission of N2O and CH4 was significantly reduced, as compared with the treatment whereby only urea was applied (control). Especially for the U+HQ+DCD treatment, the total emission of N2O and CH4 was about 1/3 and 1/2 of that in the control, respectively. In the presence of wheat straw, the total N2O emission from the U+HQ+DCD treatment was about 1/2 of that from the control. The total CH4 emission was less influenced. Wheat straw addition, however, induced a substantial increase in emissions of N2O and CH4. Hence, simultaneous application of organic materials with a high C/N ratio and N-fertilizer (e.g. urea) is not a suitable method to reduce the N2O and CH4 emission. Application of HQ+DCD together with urea seemed to improve the rice growth and to reduce both emissions. The NO3 -N content of the rice plants and denitrification of (NO3 +NO2 )-N might contribute to the N2O emission from flooded rice fields.  相似文献   

12.
Experiments were conducted to investigate methane (CH4) production, oxidation, and emission from flooded rice soils. Incorporation of green manure (Sesbania rostrata) into rice fields led to a several-fold increase in CH4 emission. A stimulatory effect of organic sources on CH4 production in soil samples was noticed even under nonflooded conditions. Addition of rice straw at 1% (w/w) to nonflooded soil samples held at –1.5 MPa effected a 230-fold increase in CH4 production over that in corresponding unamended soil samples at 35 d, as compared with a threefold increase in rice straw-amended soil over that in unamended soil under flooded conditions. In a study involving two experimental field sites differing in water regimes but planted to the same rice cultivar (cv Gayatri) and fertilized with prilled urea at 60 kg N ha–1, the field plots with deep submergence of around 30 cm (site I) emitted distinctly more CH4 than did the plots with continuous water depth of 3–6 cm (site II). Likewise, in another incubation study, CH4 production in flooded soil samples increased with a progressive increase in standing water column from 5 mm to 20 mm. Application of carbamate insecticide, carbofuran, at 2 kg ai ha–1 to rice fields retarded CH4 emission through enhanced CH4 oxidation. Hexachlorocyclohexane was found to inhibit CH4 emission. The results suggest the need for extensive research efforts to develop technologies with dual objectives of environmental protection and crop productivity.  相似文献   

13.
Methane (CH4) emissions from irrigated rice fields were measured using an automatic sampling-measuring system with a closed chamber method in 1995–98. Average emission rates ranged from 11 to 364 mg m–2 d–1 depending on season, water regime, and fertilizer application. Crop management typical for this region (i.e., midseason drainage and organic/mineral fertilizer application) resulted in emission of 279 and 139 mg CH4 m–2 d–1 in 1995 and 1997, respectively. This roughly corresponds to emissions observed in other rice-growing areas of China. Emissions were very intense during the tillering stage, which accounted for 85% of total annual emission, but these were suppressed by low temperature in the late stage of the season. The local irrigation practice of drying at mid-season reduced emission rates by 23%, as compared with continuous flooding. Further reduction of CH4 emissions could be attained by (1) alternate flooding/drying, (2) shifting the drainage period to an earlier stage, or (3) splitting drainage into two phases (of which one is in an earlier stage). Emission rates were extremely sensitive to organic amendments: seasonal emissions from fields treated with pig manure were 15–35 times higher than those treated with ammonium sulfate in the corresponding season. On the basis of identical carbon inputs, CH4 emission potential varied among organic amendments. Rice straw had higher emissions than cattle manure but lower emissions than pig manure. Use of cultivar Zhongzhuo (modern japonica) reduced CH4 emission by 56% and 50%, in 1995 and 1997, respectively, as compared with Jingyou (japonica hybrid) and Zhonghua (tall japonica). The results give evidence that CH4 emissions from rice fields in northern China can be reduced by a package of crop management options without affecting yields.  相似文献   

14.
Two atmospheric diffusion models, the box model ad the ATDL (Atmospheric Turbulent and Diffusion Laboratory) model, were used to calculate regional methane (CH4) emissions of rice fields in the Beijing area. Compared with conventional closed chamber measurements, the box model overestimated CH4 emission because of meteorological conditions--the ground inverse layer was not favorable for the application of the model during the rice-growing season. The ATDL model, on the other hand, handled this unfavorable meteorological condition and gave reasonable CH4 emission estimates (about 6.1–8.5 mg m–2 h–1) close to conventional measurements (about 0.3–14.3 mg m–2 h–1) in June, a period generally characterized by significant CH4 emission from rice fields. In September, CH4 emission as measured with closed chambers was negligible (about 0–0.3 mg m–2 h–1), but the ATDL model still calculated it to be about 2.8–5.3 mg m–2 h–1, albeit at a low level and considerably below the June emission level. This discrepancy cannot be explained at present and needs further stuy. Most likely causes are measurement artifacts and/or the presence of minor local CH4 sources (ditches, field depressions) in the study area. The application of atmospheric diffusion models for regional CH4 emission estimation depends greatly on meteorological conditions. Moreover, the models tend to give much more reliable results during periods of rather high CH4 emission. This coincides with the time that such regional CH4 emission estimates are most valuable. The atmospheric diffusion models complement the closed chamber method by providing integrated CH4 emission estimates from 1–100-km2 rice areas. Detailed information about agricultural management of rice fields and other potential CH4 sources within the study region are necessary to better understand the integrated regional emission estimates.  相似文献   

15.
To quantitatively assess the effects of agricultural practices on methane (CH4) emissions from rice fields, a two-year (2005/2006) field experiment with 23 factorial designs was conducted to assess the effects of three driving factors on CH4 emissions in South China: continuously flooded (W0) and mid-season and final drainages (W2), straw (S1) and nitrogen fertilizer (N1) applications and their controls (S0, N0). Results showed that averaged across all the treatments about 75?% of the seasonal total CH4 occurred between the rice transplanting and booting stage, while constituted only 33?% of the seasonal total rice biomass during the same period. Averaged across the treatments in 2006, CH4 emissions were substantially decreased by mid-season drainage up to 60?% (15.6 vs. 39.0?g?m?2). The decreased CH4 emissions represented almost all of the decrease in the total global warming potentials. Without straw incorporation CH4 emissions substantially decreased up to 59?% (15.9 vs. 38.7?g?m?2). The stimulating effects of straw were significantly greater for W0 than W2 treatment, being also greater in the 2005 than in the 2006 season. A significant inter-annual difference in CH4 emissions was found when averaged across straw incorporation and N fertilizer applications for the W2 treatment (42.8 and 15.4?g?m?2 in 2005 and 2006, respectively). Moreover, N fertilization has no significant effect on CH4 emissions in this study. Our results demonstrate that although straw effects varied greatly with specific management, both straw managements and water regimes are equally important driving factors and thus being the most promising measures attenuating CH4 emissions while achieving sustainable rice production.  相似文献   

16.
A pot experiment was carried out to investigate the effect of soil water content in the non-rice growth season (winter season) on CH4 emission during the following rice-growing period. The results showed that CH4 fluxes increased significantly with the increase of soil water content in the winter season, except air-dry water condition. The mean CH4 fluxes of treatments with soil water contents in the winter of 3.89–5.37% (air-dry), 25–35%, 50–60%, 75–85% and 107% (flooded) of field water capacity (FWC) were 13.04, 4.04, 8.61, 13.26 and 20.47 mg m–2 h–1, respectively. Antecedent soil water contents also markedly affected temporal variation patterns of CH4 fluxes and soil redox potential (Eh) during the rice-growing period. The higher soil water contents in the winter season were, the quicker soil Eh decreased, and the earlier CH4 emission occurred after rice transplanting, except air-dry water condition. Though the seasonal mean CH4 flux was significantly correlated with the seasonal mean soil Eh, the seasonal variation of CH4 fluxes was not always significantly correlated with soil Eh. For the treatment flooded in the fallow season, there was no significant correlation between CH4 flux and soil Eh, but there was significant correlation between CH4 flux and soil temperature during rice growth season. In contrast, for the other four treatments, it was soil Eh, not soil temperature that significantly affected the temporal variation of CH4 emissions. Soil water contents in the fallow season significantly influenced concentrations of soil labile organic carbon (including undecomposed plant debris), active Fe and Mn immediately before rice transplanting. The mean CH4 fluxes during rice-growing period were significantly correlated with soil labile organic carbon contents (positively) and contents of soil active Fe and Mn (negatively).  相似文献   

17.
Methane Emissions from Irrigated Rice Fields in Northern India (New Delhi)   总被引:1,自引:0,他引:1  
Methane (CH4) emission fluxes from rice fields as affected by water regime, organic amendment, and rice cultivar were measured at the Indian Agricultural Research Institute, New Delhi, using manual and automatic sampling techniques of the closed chamber method. Measurements were conducted during four consecutive cropping seasons (July to October) from 1994 to 1997. Emission rates were very low (between 16 and 40 kg CH4 m–2 season–1) when the field was flooded permanently. These low emissions were indirectly caused by the high percolation rates of the soil; frequent water replenishment resulted in constant inflow of oxygen in the soil. The local practice of intermittent flooding, which encompasses short periods without standing water in the field, further reduced emission rates. Over the course of four seasons, the total CH4 emission from intermittently irrigated fields was found to be 22% lower as compared with continuous flooding. The CH4 flux was invariably affected by rice cultivar. The experiments conducted during 1995 with one cultivar developed by IRRI (IR72) and two local cultivars (Pusa 169 and Pusa Basmati) showed that the average CH4 flux from the intermittently irrigated plots without any organic amendment ranged between 10.2 and 14.2 mg m–2 d–1. The impact of organic manure was tested in 1996 and 1997 with varieties IR72 and Pusa 169. Application of organic manure (FYM + wheat straw) in combination with urea (1:1 N basis) enhanced CH4 emission by 12–20% as compared with fields treated with urea only. The site in New Delhi represents one example of very low CH4 emissions from rice fields. Emissions from other sites in northern India may be higher than those in New Delhi, but they are still lower than in other rice-growing regions in India. The practice of intermittent irrigation--in combination with low organic inputs--is commonly found in northern India and will virtually impede further mitigation of CH4 emissions in significant quantities. In turn, the results of this study may provide clues to reduce emissions in other parts of India with higher baseline emissions.  相似文献   

18.
Soil organic matter, roots (photosynthates) and applied organic materials (rice straw etc.) are the main sources of methane (CH4) emitted from paddy fields. The potential CH4 production in Japanese paddy fields were estimated from chemical properties of paddy soils of respective soil series, their acreage and thermal regimes during the rice growing period. The estimated amounts of potential CH4 production were from 24 to 54 kg-C ha-1 among 7 Districts in Japan, which are around one fifth of the amounts of CH4 emission observed from paddy fields in the world. 13CO2 uptake pot experiments were carried out three times from Aug. 8 to Sept. 25 to the treatment without rice straw applications in 1993 and four times from June 30 to Sept. 13 to the treatments with and without rice straw applications in 1994 to estimate the contribution of photosynthesized carbon to CH4 emission. The contribution percentages of photosynthesized carbon to the total CH4 emitted to the atmosphere were calculated to be 22% and 29-39% for the entire growth period in the treatments with and without rice straw applications, respectively. The relationship between the amount of CH4 emission to the atmosphere from submerged paddy soils with rice plants and the application level (0-8 g kg-1) of rice straw in soil was investigated in a pot experiment. The increase (Y) in cumulative amounts of CH4 with the increase in the application level of rice straw was formulated with a logistic curve: Y=k[a/(1 +be-cx)]; x, application level of rice straw; k, a coefficient for relative CH4 emission. Since the seasonal variations in coefficients a, b and c in the equation were also formulated as the function of the sum of effective temperature (E, Σ (T-15); T, daily average temperature), Y from any paddy soil by any level of rice straw application was known to be estimated by the equation: Y=k[a(E)/(1 +b(E)e-c(E)x)]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Incubation experiments were conducted under controlled laboratory conditions to study the interactive effects of elevated carbon dioxide (CO2) and temperature on the production and emission of methane (CH4) from a submerged rice soil microcosm. Soil samples (unamended soil; soil + straw; soil + straw + N fertilizer) were placed in four growth chambers specifically designed for a combination of two levels of temperature (25 °C or 35 °C) and two levels of CO2 concentration (400 or 800 mol mol–1) with light intensity of about 3000 Lx for 16 h d–1. At 7, 15, 30, and 45 d after incubation, CH4 flux, CH4 dissolved in floodwater, subsurface soil-entrapped CH4, and CH4 production potential of the subsurface soil were determined. The results are summarized as follows: 1) The amendment with rice straw led to a severalfold increase in CH4 emission rates, especially at 35 °C. However, the CH4 flux tended to decrease considerably after 15 d of incubation under elevated CO2. 2) The amount of entrapped CH4 in subsurface soil and the CH4 production potential of the subsurface soil were appreciably larger in the soil samples incubated under elevated CO2 and temperature during the early incubation period. However, after 15 d, they were similar in the soil samples incubated under elevated or ambient CO2 levels. These results clearly indicated that elevated CO2 and temperature accelerated CH4 formation by the addition of rice straw, while elevated CO2 reduced CH4 emission at both temperatures.  相似文献   

20.
A greenhouse pot experiment was carried out to study the effect of land management during the winter crop season on methane (CH4) emissions during the following flooded and rice-growing period. Three land management patterns, including water management, cropping system, and rice straw application time were evaluated. Land management in the winter crop season significantly influenced CH4 fluxes during the following flooded and rice-growing period. Methane flux from plots planted to alfalfa (ALE) in the winter crop season was significantly higher than those obtained with treatments involving winter wheat (WWE) or dry fallow (DFE). Mean CH4 fluxes of treatments ALE, WWE, and DFE were 28.6, 4.7, and 4.1 mg CH4 m–2 h–1 in 1996 and 38.2, 5.6, and 3.2 mg CH4 m–2 h–1 in 1997, respectively. The corresponding values noted with continuously flooded fallow (FFE) treatment were 6.1 and 5.2 times higher than that of the dry fallow treatment in 1996 and 1997, respectively. Applying rice straw just before flooding the soil (DFL) significantly enhanced CH4 flux by 386% in 1996 and by 1,017% in 1997 compared with rice straw application before alfalfa seed sowing (DFE). Land management in the winter crop season also affected temporal variation patterns of CH4 fluxes and soil Eh after flooding. A great deal of CH4 was emitted to the atmosphere during the period from flooding to the early stage of the rice-growing season; and CH4 fluxes were still relatively high in the middle and late stages of the rice-growing period for treatments ALE, DFL, and FFE. However, for treatments DFE and WWE, almost no CH4 emission was observed until the middle stage, and CH4 fluxes in the middle and late stages of the rice-growing period were also very small. Soil Eh of treatments ALE and DFL decreased quickly to a low value suitable for CH4 production. Once Eh below –150 mV was established, the small changes in Eh did not correlate to changes in CH4 emissions. The soil Eh of treatments DFE and WWE did not decrease to a negative value until the middle stage of the rice-growing period, and it correlated significantly with the simultaneously measured CH4 fluxes during the flooded and rice-growing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号