共查询到20条相似文献,搜索用时 15 毫秒
1.
伪装目标检测(camouflaged object detection,COD)旨在检测隐藏在复杂背景中的伪装目标。由于伪装目标的特点:前景与背景纹理相似、边缘对比度低,导致现有方法得到的预测图像边缘模糊、小目标区域缺失。因此,本文提出了边缘信息引导的伪装目标检测网络(edge information guided network,EIGNet) 。首先,通过低层特征和高层特征对目标的边缘进行显式建模,充分提取目标的边缘特征指导后续特征表示。然后,通过双分支结构处理不同维度的伪装目标。其中,全局分支用以提取全局上下文信息强调大目标的全局贡献,局部分支用以挖掘丰富的局部低级线索增强小目标的特征表示。最后,采用自顶向下的方式实现相邻层特征的逐步融合,得到具有精细边缘和完整区域的预测图像。在3个伪装数据集上的实验结果表明本文方法优于其他15个模型,在NC4K数据集上平均绝对误差(mean absolute error,MAE) 降至0.044。 相似文献
2.
3.
Aggregation of local and global contextual information by exploiting multi-level features in a fully convolutional network is a challenge for the pixel-wise salient object detection task. Most existing methods still suffer from inaccurate salient regions and blurry boundaries. In this paper, we propose a novel edge-aware global and local information aggregation network (GLNet) to fully exploit the integration of side-output local features and global contextual information and utilization of contour information of salient objects. The global guidance module (GGM) is proposed to learn discriminative multi-level information with the direct guidance of global semantic knowledge for more accurate saliency prediction. Specifically, the GGM consists of two key components, where the global feature discrimination module exploits the inter-channel relationship of global semantic features to boost representation power, and the local feature discrimination module enables different side-output local features to selectively learn informative locations by fusing with global attentive features. Besides, we propose an edge-aware aggregation module (EAM) to employ the correlation between salient edge information and salient object information for generating estimated saliency maps with explicit boundaries. We evaluate our proposed GLNet on six widely-used saliency detection benchmark datasets by comparing with 17 state-of-the-art methods. Experimental results show the effectiveness and superiority of our proposed method on all the six benchmark datasets. 相似文献
4.
提出一种简单快速的红外图像显著目标检测算法,算法可以分为三步:首先,对原始红外图像进行预处理以增强目标与背景的对比度;然后,在log频谱中提取预处理后图像的频谱残差,通过相应的反变换及简单的阈值分割,可以得到显著目标的大致区域;最后,采用一个滑动窗口在目标候选区域内进行搜索确定显著目标的准确位置,这个过程采用由目标及其周围区域在原始图像中的灰度分布得到的半局部特征对比度的概率表达得到每个像素点的显著性值,进行阈值分割得到显著目标,改变滑动窗口的大小可以检测出不同尺度的目标。采用大量的红外图像对算法进行测试,实验结果表明该算法具有高效性和鲁棒性。 相似文献
6.
Objects that occupy a small portion of an image or a frame contain fewer pixels and contains less information. This makes small object detection a challenging task in computer vision. In this paper, an improved Single Shot multi-box Detector based on feature fusion and dilated convolution (FD-SSD) is proposed to solve the problem that small objects are difficult to detect. The proposed network uses VGG-16 as the backbone network, which mainly includes a multi-layer feature fusion module and a multi-branch residual dilated convolution module. In the multi-layer feature fusion module, the last two layers of the feature map are up-sampled, and then they are concatenated at the channel level with the shallow feature map to enhance the semantic information of the shallow feature map. In the multi-branch residual dilated convolution module, three dilated convolutions with different dilated ratios based on the residual network are combined to obtain the multi-scale context information of the feature without losing the original resolution of the feature map. In addition, deformable convolution is added to each detection layer to better adapt to the shape of small objects. The proposed FD-SSD achieved 79.1% mAP and 29.7% mAP on PASCAL VOC2007 dataset and MS COCO dataset respectively. Experimental results show that FD-SSD can effectively improve the utilization of multi-scale information of small objects, thus significantly improve the effect of the small object detection. 相似文献
7.
针对基于深度学习的目标检测网络模型多采用级联的卷积网络结构进行特征提取,没有很好地利用多尺度特征融合的信息,以及卷积往往采用方形卷积核而没有提取出具备方向性的特征等问题,提出了一种特征提取模块,采用不同大小形状的卷积核结合异性卷积核并行提取特征,并进行融合。该类结构相比于级联网络更能提取并融合目标的多尺度特征,同时提取具有方向性的特征。提出的特征增强型单步目标检测器(Feature Enhanced Single Shot Detector,FESSD)网络基于单步目标检测器(Single Shot Detector,SSD),修改了网络结构、加入特征提取模块并采用多层特征融合,在VOC0712数据集上大大提高了检测准确率。 相似文献
8.
9.
目标检测通常利用复杂的、高维度的特征来提高其检测精度,而高维特征往往会产生较高的计算复杂度和存储开销。经典的特征压缩算法常常被用于目标检测系统以实现特征降维,但在其求解过程中会涉及到大量的矩阵分解运算,从而降低了算法的实时性。针对此问题,提出一种基于随机映射的特征压缩算法。该算法仅通过一个稀疏随机矩阵和简单的矩阵乘法运算就实现了特征从高维空间到低维空间的映射。利用经该算法压缩后的特征向量构建了Ada-Boost分类器,实验结果表明,该分类器在保证检测精度的前提下,提高了目标检测的实时性。 相似文献
10.
11.
12.
基于水下距离选通激光成像技术,提出了一种可用于长距离下的水下线状目标检测算法。该算法针对水下成像中低对比度、模糊和噪声等特性,首先采用对比度拉升、中值滤波、小波变换等方法对图像进行增强处理;然后利用Canny边缘检测算子提取出目标的边缘特征;最后针对边缘特征中出现的噪声边缘问题,选用了鲁棒性强的随机抽样一致性参数估计算法从边缘特征中检测出线状目标,并计算得到目标的位置和方向等相关参数。实验结果表明,该算法可以有效地检测出水下曲线状目标,弥补现有方法只能检测直线目标的不足,检测率可以达到93%,有效检测距离能达到5倍水下衰减长度。 相似文献
13.
在计算机视觉中形状是目标识别和检测的重要特征,针对目前许多基于形状特征的检测方法信息不够丰富,容易受边缘缺损变形等方面的影响,不具有局部特性,尤其是在许多复杂环境下很难实现对目标的正确检测等不足,提出了一种基于弦切变换理论在有限的目标边缘点信息基础上提取几何形状特征及相应的目标检测方法。该特征具有平移、旋转以及缩放不变性,基于此特征进行的目标检测能有效的得到目标的中心位置以及相关的二维运动参数,即使在一些复杂环境以及目标边缘部分失真或缺损的情况下也具有一定的鲁棒性。但由于边缘本身容易受到图像质量、对比度以及量化误差等影响,从而影响算法的精度。因此,文中通过融合丰富的灰度信息,使表征目标的特征更加丰富和完善,在形状和灰度的共同约束下提高检测的正确率和精确性。通过对多组图像序列进行仿真实验,结果表明了算法的有效性,及其在准确性和精确性上的提高,改进后待测目标与模板之间的匹配率可达90%以上。 相似文献
14.
在计算机视觉任务中,平衡目标检测的精度与速度对于后续的实际应用如目标跟踪和识别起到关键作用。基于此,提出了一种基于注意力掩模融合的目标检测算法。首先,通过VGG网络提取特征,经过初步二分类和回归后得到一系列预选框;然后,将上述预选框输入到特征金字塔结构中,通过构建注意力掩模模块自适应地学习有效特征,同时融合特征金字塔结构与注意力掩模模块得到更具表征性的特征;最后经过多分类和回归得到多尺度的检测结果。在PASCALVOC2007和PASCALVOC2012数据集上展开了实验,测试集结果显示,在交集并集比(IOU)为0.5的条件下,对于320×320的图片输入,平均精度均值(mAP)分别为81.0%和79.0%,检测速度为60.9fps。本文算法将注意力信息结合到目标检测中,实现了通用目标检测的精度和速度均衡。 相似文献
15.
基于深度学习的目标检测器RetinaNet和Libra RetinaNet均是使用特征金字塔网络融合多尺度特征,但上述两个检测器存在特征融合不充分的问题.鉴于此,提出一种多尺度特征融合算法.该算法是在Libra RetinaNet的基础上进一步扩展,通过建立两条自底向上的路径构建两个独立的特征融合模块,并将两个模块产生... 相似文献
16.
针对航拍图像中对于小尺度的飞机目标出现漏检、错检的问题,在SSD(SingleShotMultiBoxDetector)模型的基础上提出了一种改进SSD的航拍图像目标检测模型。首先,针对SSD模型中浅层特征图中缺乏语义、细节信息的问题,设计了一种特征融合机制,通过添加细节信息补充特征层和添加由递归反向路径获得的语义信息补充特征层来丰富浅层特征图的语义、细节信息。然后,针对SSD模型对通道以及空间信息的关注能力不足的问题,引入了结合通道和空间的混合注意力模块来提高模型整体的关注能力。最后,针对SSD模型中先验框与小尺度目标不匹配的问题,对先验框的比例进行了调整。使用自制的航拍图像数据集进行验证,结果表明改进后的模型检测精度为95.7%,相较于原模型提高了7.5%,检测速度达到30.8FPS。 相似文献
17.
18.
背景减除法是一种主要的运动目标检测框架,但在复杂环境中构建一种初始模型建立周期短、可靠性高、鲁棒性好的模型仍是一大难题.本文从场景感知的角度出发,在背景减除框架的基础上提出一种目标检测方法.该方法根据前两帧中稳定的结构信息感知背景中潜在的前景区域,在第二帧建立初始模型时利用最近邻域背景像素点代替可能的前景像素点,提高了初始模型可靠性;结合颜色信息和二进制特征提出了像素点二级分类判决机制,并通过感知像素点邻域内的纹理复杂度自适应调整局部判决阈值和更新频率;在模型更新阶段提出处理误判的反馈机制.在公开视频序列上同几种流行检测算法的实验对比结果证明了本文算法的有效性和优越性. 相似文献
19.
20.
为了同时改善实时行人检测的误检率和检测速度, 文中引入了二阶聚合通道特征( SOACF)来提高行人检测算法的性能, 该算法主要基于图像中的一阶信息聚合通道特征( ACF)检测器, 互补了ACF与SOACF的性能, 并设计开发了一种加权非最大抑制合并算法.与ACF检测器相比, 该合并检测器不仅在 INRIA, Calte... 相似文献