共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
为了检测红外场景中尺寸大小变化的弱小目标,针对传统滤波方法中固定大小滤波核对此类特性目标检测表现出的不足,提出一种基于尺度空间理论的红外弱小目标检测方法。首先对弱小目标特性进行分析,提出采用点扩散函数形式的目标模型来描述弱小目标;采用固定自适应邻域的方法对原始红外图像进行预处理,抑制背景杂波,增强目标能量;依据尺度规范化后的拉普拉斯尺度空间对图像不同元素滤波响应的不同,获取图像中的可疑目标,利用可疑目标点与其周围像素的梯度关系得到可疑目标点的中心坐标,并据此得到其在图中的尺寸大小;对每个可疑目标划分一个自适应大小窗口,获取分割阈值,分割出真实目标。实验结果表明,该方法能较好地检测出弱小目标,且具有较低的虚警率。 相似文献
3.
4.
5.
针对现存背景抑制算法未能有效抑制复杂背景而导致的高虚警率及低检测率问题,提出一种基于六方向梯度差各向异性高斯滤波抑制、双层正交灰度差与对角灰度差目标增强、灰度指数自适应阈值分割的小目标检测算法。首先,采用高斯滤波技术融入梯度差思想设置一系列背景抑制策略;接着,将抑制后的图像利用正交灰度差与对角灰度差映射在双层滑窗上增强局部对比度,提高目标显著性;最后,通过像素灰度指数自适应分割算法检测真实弱小目标。实验结果表明,该算法的背景抑制因子指标高达93%,能随背景局部变化来自适应建立背景抑制模型,从而自适应抑制复杂背景突出目标。 相似文献
6.
7.
基于显著性与尺度空间的红外弱小目标检测 总被引:1,自引:0,他引:1
针对复杂的天空背景,提出了一种基于显著性与尺度空间的红外弱小目标检测算法.首先通过频域残差法对原始图像进行初步处理,缩小红外弱小目标的待识别目标区域;接着利用DoG算子得到预处理后图像的尺度空间并实行特征点检测,获得最佳尺度图像,再对特征图像进行加权融合;最后通过信息熵分割来实现红外弱小目标的检测.仿真结果表明,本文方法跟文献中所提的优秀算法相比,能有效地检测出红外弱小目标,提升了目标图像的信杂比.同时,能很好地适应不同复杂场景,为红外弱小目标的跟踪应用奠定了基础. 相似文献
8.
提出一种简单快速的红外图像显著目标检测算法,算法可以分为三步:首先,对原始红外图像进行预处理以增强目标与背景的对比度;然后,在log频谱中提取预处理后图像的频谱残差,通过相应的反变换及简单的阈值分割,可以得到显著目标的大致区域;最后,采用一个滑动窗口在目标候选区域内进行搜索确定显著目标的准确位置,这个过程采用由目标及其周围区域在原始图像中的灰度分布得到的半局部特征对比度的概率表达得到每个像素点的显著性值,进行阈值分割得到显著目标,改变滑动窗口的大小可以检测出不同尺度的目标。采用大量的红外图像对算法进行测试,实验结果表明该算法具有高效性和鲁棒性。 相似文献
9.
如何在复杂背景和低信杂比条件下准确检测到小目标对于精确制导武器的发展和红外预警等具有重要意义。为了在复杂背景条件下提高图像信杂比并有效地检测出小目标,提出一种基于中心域与邻域灰度对比度的红外小目标检测方法。通过计算输入图像的对比度图和显著度图,提高了目标对比度同时抑制背景杂波;在此基础上自适应设定阈值分离出小目标。实验结果表明:与传统LCM(Local Contrast Measure)方法相比,所提出的方法能够取得更高的检测率和较低的虚警率,尤其是对于复杂背景下的弱小目标检测,相对于对比算法,优势更明显。 相似文献
10.
11.
针对传统局部对比度算法在强杂波背景下,容易引入虚警目标的不足,提出了一种空域加权局部对比度的红外小目标检测算法。首先,利用具有中心激励和侧向抑制性的二维高斯差分滤波器,抑制了原始图像大部分的背景杂波,以提高图像的信噪比;然后,利用目标均值与邻域的中值的比值进行局部对比度测量,再用目标各区域的灰度均值差加权局部对比度,生成目标显著图;最后,对显著图进行自适应阈值分割,检测出真实目标。实验结果表明,与其他几种检测方法对比,该算法不仅具有较高的信躁比增益和背景抑制因子,还具有较高的检测率和较低的虚警率,是一种有效的红外小目标检测方法。 相似文献
12.
为了更好地凸显复杂环境的红外目标特征,提出 一种融合局部和全局特征的红外图像 显著性检测方法。在获取图像超像素的基础上,提取每个区域空间距离加权的邻域对比度特 征,并考虑区域大小和位置的影响,构建局部显著图;然后提取每个区域空间距离加权的全 局灰度特征,构建全局显著图;最后融合局部和全局显著图,实现图像显著性检测。实验结 果 表明,本文方法的显著图结果目标区域一致高亮且边缘清晰,同时背景杂波抑制效果好。无 论 主观评价还是客观指标,本文方法都优于当前流行的图像显著性检测方法。 相似文献
13.
为解决复杂背景下红外弱小目标检测精度低的问题,本文提出一种基于视觉对比机制的红外弱小目标检测方法,算法主要模拟了人眼对目标对比度敏感这一机制。首先利用8向梯度方程提取红外图像的梯度显著图并二值化处理;根据小目标的尺寸大小特征对梯度显著图进行优化处理,剔除孤立的噪声点和尺寸较大的背景梯度显著区域;利用视觉对比机制对优化后的显著图进行局部对比度计算,通过阈值处理剔除虚警目标,完成红外弱小目标检测。仿真实验表明,该算法在低信噪比情况下对红外弱小目标的检测率较高,且虚警率低,单帧检测时间较小。 相似文献
14.
提出了一种天基预警系统对弹道中段目标红外探测的仿真方法。利用卫星工具箱的红外模块(Satellite Tool Kit/Electro-Optical Infrared Sensor, STK/EOIR)对中段目标红外辐射的特性进行了研究。首先,提出了基于STK/EOIR的弹道中段目标动态红外辐射特性仿真方法,分析了EOIR目标红外辐射的计算模型和传感器接收模型。然后,给出了典型目标在中波、中长波以及长波红外波段的红外辐照度的仿真结果。最后,对比分析了观测角、观测距离对天基凝视传感器接收目标红外辐照度的影响。仿真结果表明,中段目标红外辐射的强度能满足天基凝视传感器的探测灵敏度要求。 相似文献
15.
针对天空背景下红外弱小目标检测困难的情况,首先通过改进的形态学滤波目标增强方法对图像进行背景抑制与噪声去除,而后采用恒虚警检测方法(CFAR)对滤波后图像进行分割,获得候选点目标,然后采用行程目标标记的方法得到候选目标的位置信息、面积信息等,单帧图像检测之后,复杂的天空背景仍然会存在虚警。为了提高检测概率、降低虚警率,结合目标运动特性(包括运动轨迹、速度、加速度等)、灰度变化、面积变化等帧间相关性采用移动式管道滤波方法对序列图像候选目标做进一步判断。实验结果表明,该方法能有效地从复杂背景中检测出真实目标。 相似文献
16.
针对远距离复杂场景下红外弱小目标信噪比低导致目标检测虚警率高的问题,提出了一种时域与空域滤波相融合的红外弱小目标检测方法。采用相对局部对比度算法(Relative Local Contrast Measure,RLCM)增强目标信噪比,抑制高亮度背景;利用目标的时空相关性,运用时域局部差分算法(Temporal Local Difference Algorithm,TLCD)增强目标,消除固定噪点。融合空域和时域的检测结果获得时空相对局部对比度图(Spatial Temporal Relative Local Contrast Map,STRLCM),通过自适应阈值分割提取待检测的真实目标。实验结果表明,与现有算法相比,所提算法可以极大地降低虚警率同时保持较高的检测效果。 相似文献
17.
基于显著性及主成分分析的红外小目标检测 总被引:5,自引:0,他引:5
将红外小目标检测作为目标与背景的二分类问题.先根据点扩散函数原理,仿真生成红外小目标训练样本,再用主成分分析方法提取目标样本的主特征,建立目标的主成分空间.对测试样本,只要判断其在主成分空间的重构残差,便可识别其是否为目标.为了提高算法的实时性,提出了一种基于显著性和主成分分析的红外小目标检测算法,先通过频域残差方法检测目标可能存在的显著性区域,再在此区域内做识别.实验结果证明该方法快速、有效. 相似文献
18.
针对复杂云背景成像弱小目标实时检测的需要,提出一种检测能力强、易实现的自适应时-空级联滤波目标检测算法,其中时域滤波采用改进的可递归实现的方差滤波器预检测出包含目标和少量杂波点在内的可疑目标点集,而后通过一种自适应像素空域边缘强度滤波器剔除剩余杂波点。算法两级滤波器的参数均实时更新,因此算法对场景变化适应能力强。对五组实际红外图像序列目标检测的实验结果表明,算法能稳定检测出多类天空背景中的目标。 相似文献