共查询到20条相似文献,搜索用时 15 毫秒
1.
Yong Xia Sisi Liu Kang Wang Xiaokun Yang Linyuan Lian Zhiming Zhang Jungang He Guijie Liang Song Wang Manlin Tan Haisheng Song Daoli Zhang Jianbo Gao Jiang Tang Matthew C. Beard Jianbing Zhang 《Advanced functional materials》2020,30(4)
Infrared solar cells that utilize low‐bandgap colloidal quantum dots (QDs) are promising devices to enhance the utilization of solar energy by expanding the harvested photons of common photovoltaics into the infrared region. However, the present synthesis of PbS QDs cannot produce highly efficient infrared solar cells. Here, a general synthesis is developed for low‐bandgap PbS QDs (0.65–1 eV) via cation exchange from ZnS nanorods (NRs). First, ZnS NRs are converted to superlattices with segregated PbS domains within each rod. Then, sulfur precursors are released via the dissolution of the ZnS NRs during the cation exchange, which promotes size focusing of PbS QDs. PbS QDs synthesized through this new method have the advantages of high monodispersity, ease‐of‐size control, in situ passivation of chloride, high stability, and a “clean” surface. Infrared solar cells based on these PbS QDs with different bandgaps are fabricated, using conventional ligand exchange and device structure. All of the devices produced in this manner show excellent performance, showcasing the high quality of the PbS QDs. The highest performance of infrared solar cells is achieved using ≈0.95 eV PbS QDs, exhibiting an efficiency of 10.0% under AM 1.5 solar illumination, a perovskite‐filtered efficiency of 4.2%, and a silicon‐filtered efficiency of 1.1%. 相似文献
2.
通过化学溶液体系中反应温度与原料配比的控制合成了第一吸收峰在833~1700 nm范围内可调的PbS量子点.利用X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM) 、吸收光谱等手段研究了化学溶液法制备的PbS量子点形貌、尺寸分布以及近红外吸收等特性.所获得的量子点尺寸分布均匀, 直径在2.6 ~7.0 nm范围内可调.基于PbS量子点的红外吸收特性, 通过表面修饰方法在原子层沉积技术(ALD)生长的TiO2薄膜上构筑了FTO/TiO2/PbS/Au光伏器件结构, 并初步研究了光电流与量子点特征吸收的关系等光电转换特性. 相似文献
3.
Mohammad Mahdi Tavakoli Hadi Tavakoli Dastjerdi Pankaj Yadav Daniel Prochowicz Huayan Si Rouhollah Tavakoli 《Advanced functional materials》2021,31(21):2010623
Here, highly efficient and stable monolithic (2-terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs-based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open-circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs. 相似文献
4.
5.
Sisi Liu Chongjian Zhang Shuangyuan Li Yong Xia Kang Wang Kao Xiong Haodong Tang Linyuan Lian Xinxing Liu Ming-Yu Li Manlin Tan Liang Gao Guangda Niu Huan Liu Haisheng Song Daoli Zhang Jianbo Gao Xinzheng Lan Kai Wang Xiao Wei Sun Ye Yang Jiang Tang Jianbing Zhang 《Advanced functional materials》2021,31(9):2006864
Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single-junction solar cells by harvesting the low-energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open-circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap-state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm-filtered solar illumination, providing a new route to unfreeze the trade-off between VOC and JSC limited by the photoactive layer with a given bandgap. 相似文献
6.
HyoJoong Lee Henry C. Leventis Soo‐Jin Moon Peter Chen Seigo Ito Saif A. Haque Tomas Torres Frank Nüesch Thomas Geiger Shaik M. Zakeeruddin Michael Grätzel Md. Khaja Nazeeruddin 《Advanced functional materials》2009,19(17):2735-2742
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics. 相似文献
7.
Alexander Mellor Antonio Luque Ignacio Tobías Antonio Martí 《Advanced functional materials》2014,24(3):339-345
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD‐IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi‐level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD‐IBSC and its temperature dependence. This allows the analysis of individual sub‐bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD‐IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD‐IBSC proposals. 相似文献
8.
Bo Hou Byung‐Sung Kim Harrison Ka Hin Lee Yuljae Cho Paul Giraud Mengxia Liu Jingchao Zhang Matthew L. Davies James R. Durrant Wing Chung Tsoi Zhe Li Stoichko D. Dimitrov Jung Inn Sohn SeungNam Cha Jong Min Kim 《Advanced functional materials》2020,30(39)
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm?3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated. 相似文献
9.
Bo Zhao Junjun Guo Chenyu Zhao Xuliang Zhang Hehe Huang Zhijie Tang Lyubov A. Frolova Pavel A. Troshin Wanli Ma Jianyu Yuan 《Advanced functional materials》2023,33(44):2304161
Dimensionality engineering involving the low-dimensional and 3D perovskites has been demonstrated as an efficient promising strategy to modulate interfacial energy loss as well as instability in perovskite solar cells (PSCs). Herein, the use of fluorinated Cesium Lead Iodide (CsPbI3) perovskite quantum dot (PQD) is first reported as interface modification layer for PSCs. The binding between the CsPbI3 PQD surface and native oleic acid (OLA)/oleylamine (OAm) ligands is governed by a dynamic adsorption–desorption equilibrium. Perfluorooctanoic acid (PFA) with stronger binding affinity and more hydrophobic nature is explored to partially replace OLA to prepare the fluorinated ligand capped CsPbI3 PQDs (F-CsPbI3). Through optimization of the addition of PFA during hot-injection synthesis, the in situ treated F-CsPbI3 PQDs display reduced surface defect states, higher photoluminescence quantum yields together with improved stability. Subsequently, both CsPbI3 and F-CsPbI3 PQDs are utilized as interface engineering layer in PSCs, delivering the best efficiency values of 21.99% and 23.42%, respectively, which is significantly enhanced compared to the control device (20.37%). More importantly, benefiting from its more hydrophobic properties, the F-CsPbI3 PQD treated device exhibits excellent ambient storage stability (25 °C, relative humidity: 35–45%), retaining over 80% of its initial efficiency after 1500 h aging. 相似文献
10.
Gurpreet Singh Selopal Haiguang Zhao Zhiming M. Wang Federico Rosei 《Advanced functional materials》2020,30(13)
Semiconductor nanocrystals, the so‐called quantum dots (QDs), exhibit versatile optical and electrical properties. However, QDs possess high density of surface defects/traps due to the high surface‐to‐volume ratio, which act as nonradiative carrier recombination centers within the QDs, thereby deteriorating the overall solar cell performance. The surface passivation of QDs through the growth of an outer shell of different materials/compositions called “core/shell QDs” has proven to be an effective approach to reduce the surface defects and confinement potential, which can enable the broadening of the absorption spectrum, accelerate the carrier transfer, and reduce exciton recombination loss. Here, the recent research developments in the tailoring of the structure of core/shell QDs to tune exciton dynamics so as to improve solar cell performance are summarized. The role of band alignment of core and shell materials, core size, shell thickness/compositions, and interface engineering of core/thick shell called “giant” QDs on electron–hole spatial separation, carrier transport, and confinement potential, before and after grafting on the carrier scavengers (semiconductor/electrolyte), is described. Then, the solar cell performance based on core/shell QDs is introduced. Finally, an outlook for the rational design of core/shell QDs is provided, which can further promote the development of high‐efficiency and stable QD sensitized solar cells. 相似文献
11.
12.
Ruixiang Peng Tingting Yan Junwei Chen Shangfeng Yang Ziyi Ge Mingtai Wang 《Advanced Electronic Materials》2020,6(3)
N‐type tin oxide (n‐SnO2) nanoparticle film has shown great potential as an electron transport layer (ETL) in fabricating highly efficient organic solar cells (OSCs) due to its low‐temperature preparation and high electrical conductivity. However, surface defects on the n‐SnO2 nanoparticles generated by the solution‐processed approach seriously limit the performance of the OSCs with n‐SnO2 ETL. InP/ZnS quantum dots (QDs) are employed to passivate the surface defects of n‐SnO2 ETL, and an inverted OSC using PM6:Y6 as active layer achieves a power conversion efficiency (PCE) of 15.22%, much higher than that of a device based on pure n‐SnO2 ETL (13.86%). The synergistic enhancement of the device open‐circuit voltage (Voc) and fill factor (FF) is attributed to the improved morphologies of PM6:Y6 layer on the QDs/ETL, increased charge extraction and collection efficiency, and decreased monomolecular recombination caused by the defect‐trapped charge carriers in the solar cell. Moreover, the inverted device with n‐SnO2/InP/ZnS QDs ETL show a much higher stability than that of the conventional PEDOT:PSS based one. This work presents a promising QDs passivation strategy on n‐SnO2 ETL to develop efficient and stable OSCs. 相似文献
13.
介绍了聚合物太阳电池的一般原理、性能表征,以及聚合物/量子点太阳电池结构,重点列举了有机及无机量子点在聚合物太阳电池中的应用,最后提出了改善聚合物/量子点太阳电池效率的方法。 相似文献
14.
利用热注入法合成带有油酸配体的PbS量子点, 用短链乙醇胺替代长链油酸做为PbS量 子点的配体。 对比了由两种材料制得的量子点薄膜与Al形成的肖特基结的J-V特性,采用热 电子发射理论对其J-V特 性进行分析,结果发现,接有短链乙醇胺的PbS量子点薄膜具有更优的整流特 性,理想因子n为3.8,明显低 于采用油酸配体的PbS量子点(n=4.6)。 研究表明,短链配体有利于提高PbS薄膜表面的均匀性并形成较好的肖 特基接触;短链置换过程提高了量子点薄膜与Al电极的接触势垒高度,使肖特基结反向 漏电流降低。 相似文献
15.
Gurpreet S. Selopal Haiguang Zhao Xin Tong Daniele Benetti Fabiola Navarro‐Pardo Yufeng Zhou David Barba François Vidal Zhiming M. Wang Federico Rosei 《Advanced functional materials》2017,27(30)
Colloidal quantum dots (QDs) are widely studied due to their promising optoelectronic properties. This study explores the application of specially designed and synthesized “giant” core/shell CdSe/(CdS)x QDs with variable CdS shell thickness, while keeping the core size at 1.65 nm, as a highly efficient and stable light harvester for QD sensitized solar cells (QDSCs). The comparative study demonstrates that the photovoltaic performance of QDSCs can be significantly enhanced by optimizing the CdS shell thickness. The highest photoconversion efficiency (PCE) of 3.01% is obtained at optimum CdS shell thickness ≈1.96 nm. To further improve the PCE and fully highlight the effect of core/shell QDs interface engineering, a CdSex S1?x interfacial alloyed layer is introduced between CdSe core and CdS shell. The resulting alloyed CdSe/(CdSex S1?x )5/(CdS)1 core/shell QD‐based QDSCs yield a maximum PCE of 6.86%, thanks to favorable stepwise electronic band alignment and improved electron transfer rate with the incorporation of CdSex S1?x interfacial layer with respect to CdSe/(CdS)6 core/shell. In addition, QDSCs based on “giant” core/CdS‐shell or alloyed core/shell QDs exhibit excellent long‐term stability with respect to bare CdSe‐based QDSCs. The giant core/shell QDs interface engineering methodology offers a new path to improve PCE and the long‐term stability of liquid junction QDSCs. 相似文献
16.
Solar Cells: Highly Stable Colloidal “Giant” Quantum Dots Sensitized Solar Cells (Adv. Funct. Mater. 30/2017)
下载免费PDF全文

Gurpreet S. Selopal Haiguang Zhao Xin Tong Daniele Benetti Fabiola Navarro‐Pardo Yufeng Zhou David Barba François Vidal Zhiming M. Wang Federico Rosei 《Advanced functional materials》2017,27(30)
17.
Krischan F. Jeltsch Martin Schädel Jörg‐Bernd Bonekamp Phenwisa Niyamakom Frank Rauscher Hans W. A. Lademann Ines Dumsch Sybille Allard Ullrich Scherf Klaus Meerholz 《Advanced functional materials》2012,22(2):397-404
The cell performance of organic‐inorganic hybrid photovoltaic devices based on CdSe nanocrystals and the semiconducting polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) is strongly dependent on the applied polymer‐to‐nanocrystal loading ratio and the annealing temperature. It is shown here that higher temperatures for the thermal annealing step have a beneficial impact on the nanocrystal phase by forming extended agglomerates necessary for electron percolation to enhance the short‐circuit current. However, there is a concomitant reduction of the open‐circuit voltage, which arises from energy‐level alterations of the organic and the inorganic component. Based on quantum dots and PCPDTBT, we present an optimized organic–inorganic hybrid system utilizing an annealing temperature of 210 °C, which provides a maximum power conversion efficiency of 2.8%. Further improvement is obtained by blending nanocrystals of two different shapes to compose a favorable n‐type network. The blend of spherical quantum dots and elongated nanorods results in a well‐interconnected pathway for electrons within the p‐type polmer matrix, yielding maximum efficiencies of 3.6% under simulated AM 1.5 illumination. 相似文献
18.
A mathematical model of quantum dot intermediate band solar cells (QDIBSCs) is investigated using two intermediate bands (IBs). These two IBs arise from the quantum dot (QD) semiconductor material within the bandgap energy. Some parameters such as the width of the QD (WQD) and the barrier thickness or the inter-dot distances between the QDs (BT) are studied to show their influence on the performance of the QDIBSC. The time-independent Schrödinger equation, which is solved using the Kronig-Penney model, is used to determine the position and bandwidth energies of the two IBs. In our proposed model, the cubic shape of the QDs from InAs0.9N0.1 and the barrier or host semiconductor material from GaAs0.98Sb0.02 are utilized. It is shown from the results obtained that changing the parameters WQD and BT has more influence on the bandwidth energy for the first IB, Δ1, than in the case of the second IB, Δ2. The optimum power conversion efficiencies (PCEs) of the QDIBSCs with two IBs for the model under study are 58.01% and 73.55% at 1 Sun and maximum solar concentration, respectively. One can observe that, in the case of the two IBs, an improvement of the PCE is achieved. 相似文献
19.
A mathematical model of quantum dot intermediate band solar cells (QDIBSCs) is investigated using two intermediate bands (IBs). These two IBs arise from the quantum dot (QD) semiconductor material within the bandgap energy. Some parameters such as the width of the QD (WQD) and the barrier thickness or the inter-dot distances between the QDs (BT) are studied to show their influence on the performance of the QDIBSC. The time-independent Schrödinger equation, which is solved using the Kronig-Penney model, is used to determine the position and bandwidth energies of the two IBs. In our proposed model, the cubic shape of the QDs from InAs0.9N0.1 and the barrier or host semiconductor material from GaAs0.98Sb0.02 are utilized. It is shown from the results obtained that changing the parameters WQD and BT has more influence on the bandwidth energy for the first IB, Δ1, than in the case of the second IB, Δ2. The optimum power conversion efficiencies (PCEs) of the QDIBSCs with two IBs for the model under study are 58.01% and 73.55% at 1 Sun and maximum solar concentration, respectively. One can observe that, in the case of the two IBs, an improvement of the PCE is achieved. 相似文献
20.
Santanu Pradhan Mariona Dalmases Ayse‐Bilgehan Baspinar Gerasimos Konstantatos 《Advanced functional materials》2020,30(39)
Unbalanced charge injection is deleterious for the performance of colloidal quantum dot (CQD) light‐emitting diodes (LEDs) as it deteriorates the quantum efficiency, brightness, and operational lifetime. CQD LEDs emitting in the infrared have previously achieved high quantum efficiencies but only when driven to emit in the low‐radiance regime. At higher radiance levels, required for practical applications, the efficiency decreased dramatically in view of the notorious efficiency droop. Here, a novel methodology is reported to regulate charge supply in multinary bandgap CQD composites that facilitates improved charge balance. The current approach is based on engineering the energetic potential landscape at the supra‐nanocrystalline level that has allowed to report short‐wave infrared PbS CQD LEDs with record‐high external quantum efficiency in excess of 8%, most importantly, at a radiance level of ≈5 W sr?1 m2, an order of magnitude higher than prior reports. Furthermore, the balanced charge injection and Auger recombination reduction has led to unprecedentedly high operational stability with radiance half‐life of 26 068 h at a radiance of 1 W sr?1 m?2. 相似文献