首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
“黑飞”无人机一旦带有炸弹等物品,会对人们带来威胁。对在公园、游乐场、学校等复杂背景下“黑飞”的无人机进行目标检测是十分必要的。前沿算法YOLOv7-tiny属于轻量级网络,具有更小的网络结构和参数,更适合检测小目标,但在识别小目标无人机时出现特征提取能力弱、回归损失大、检测精度低的问题;针对此问题,提出了一种基于YOLOv7-tiny改进的无人机图像目标检测算法YOLOv7-drone。首先,建立无人机图像数据集;其次,设计一种新的注意力机制模块SMSE嵌入到特征提取网络中,增强对复杂背景下无人机目标的关注度;然后,在主干网络中融入RFB结构,扩大特征层的感受野,丰富特征信息以增强特征提取的鲁棒性;然后,改进网络中的特征融合机制,通过新增小目标检测层,增加对小尺度目标的检测精度;然后,改变损失函数提高模型的收敛速度,减少损失以增强模型的鲁棒性;最后,引入可变形卷积(Deformable convolution, DCN),更好的根据目标本身形状进行特征提取,提升了检测精度。在PASCAL VOC公共数据集上进行对比实验,结果表明改进后的算法YOLO7-drone相比于YOLOv7-t...  相似文献   

2.
针对无人机检测缺陷绝缘子时,存在目标特征不明显、小目标检测效果差、无法同时满足检测速度和精度的问题,提出一种基于改进YOLOv5的绝缘子缺陷检测算法。首先,针对目标特征不明显的问题,将ConvNeXt网络应用到YOLOv5主干网络中,以加强网络特征提取能力;其次,针对图像中的小目标特征,在主干网络中引入坐标注意力机制,提高对小目标的检测精度;然后,对改进模型进行剪枝操作,剪去模型中冗余的通道,从而减少模型参数量,使模型更加轻量化。实验结果表明:所提算法在绝缘子缺陷数据集IDID上的平均精度均值达到93.84%,较原始算法提升了3.4个百分点;检测速率达到166 frame/s,较原算法速率提升了69.4%,可以满足对输电线路实时检测的要求。  相似文献   

3.
周雪珂  刘畅  周滨 《雷达学报》2021,10(4):531-543
目前深度学习技术在SAR图像的船舶检测中已取得显著的成果,但针对SAR船舶图像中复杂多变的背景环境,如何准确高效地提取目标特征,提升检测精度与检测速度仍存在着巨大的挑战。针对上述问题,该文提出了一种多尺度特征融合与特征通道关系校准的 SAR 图像船舶检测算法。在Faster R-CNN的基础上,首先通过引入通道注意力机制对特征提取网络进行特征间通道关系校准,提高网络对复杂场景下船舶目标特征提取的表达能力;其次,不同于原始的基于单一尺度特征生成候选区域的方法,该文基于神经架构搜索算法引入改进的特征金字塔结构,高效地将多尺度特征进行充分融合,改善了船舶目标中对小目标、近岸密集目标的漏检问题。最后,在SSDD数据集上进行对比验证。实验结果表明,相较原始的Faster R-CNN,检测精度从85.4%提高到89.4%,检测速率也从2.8 FPS提高到10.7 FPS。该方法能够有效实现高速与高精度的SAR图像船舶检测,具有一定的现实意义。   相似文献   

4.
针对复杂场景下三维目标检测算法对小目标物体识别精度不高、容易出现错检漏检问题,提出一种基于改进PointPillars的三维目标检测算法,利用锥形点云获取物体的边界信息,抑制环境噪声造成的干扰;设计一种空间自注意力模块,捕获点云支柱间的全局上下文信息和空间信息,扩大点云特征感知范围,提升小目标物体识别在复杂场景下的鲁棒性;改进主干网络的下采样模块,采用ConvNeXt v2模块增强网络的特征提取能力。在KITTI数据集上的测试结果表明,相比PointPillars原始网络,改进算法在汽车、行人、骑行者类别上的平均检测精度分别提升了3.73%、5.89%、5.7%,证明了所提出方法的有效性。  相似文献   

5.
罗茜  赵睿  庄慧珊  罗宏刚 《信号处理》2022,38(12):2628-2638
针对无人机平台下小目标检测性能差、目标尺度变化较大、复杂背景干扰等导致跟踪失败的问题,该文提出一种联合优化检测器YOLOv5(You Only Look Once)和Deep-SORT(Simple Online and Realtime Tracking with a Deep Association Metric)的无人机多目标跟踪算法。该算法使用改进的CSPDarknet53(Cross Stage Paritial Darknet53)骨干网络重新构建检测器中的特征提取模块,同时通过自顶向下和自底向上的双向融合网络设计小目标检测层,采用无人机航拍数据集训练更新优化后的目标检测网络模型,解决小目标检测性能差问题;在跟踪模块中,提出结合时空注意力模块的残差网络作为特征提取网络,加强网络感知微小外观特征及抗干扰的能力,最后采用三元组损失函数加强神经网络区分类内差异的能力。实验结果表明,优化后的目标检测的平均检测精度相比于原始YOLOv5提升了11%,在UAVDT数据集上相较于原始跟踪算法准确率与精度分别提高了13.288%、3.968%,有效减少目标身份切换频次。   相似文献   

6.
合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测紧贴军事和民用需求,为海洋监视提供重要信息支撑。针对复杂大场景SAR图像,本文设计了一种基于级联网络的舰船目标检测框架,该网络框架主要由D-BiSeNet海陆分割、分块区域筛选和CP-FCOS目标检测三部分组成。通过改进双边网络(D-BiSeNet)进行SAR图像海陆分割,增强了图像空间位置信息及网络边缘损失,提高了分割性能。通过海域面积比参数设定进行分块区域筛选,可以有效选择网络处理图像块,提升算法整体检测效率。CP-FCOS网络将Category-Position特征优化模块应用于传统FCOS网络,强化网络特征提取能力,同时改进目标分类和边界框回归方式,提高舰船目标定位效果。基于Sentinel-1和高分三号大场景实测数据实验表明,相比于传统CFAR、Faster-RCNN和RetinaNet方法,本文方法综合检测性能提升25.7%,3.7%和9.9%,同时检测速度提升10.0%以上。   相似文献   

7.
针对红外图像存在细节纹理特征差、对比度低、目标检测效果差等问题,基于YOLOv4(You Only Look Once version 4)架构提出了一种融合通道注意力机制的多尺度红外目标检测模型。该模型首先通过降低主干特征提取网络深度,减少了模型参数。其次,为补充浅层高分辨率特征信息,重新构建多尺度特征融合模块,提高了特征信息利用率。最后在多尺度加强特征图输出前,融入通道注意力机制,进一步提高红外特征提取能力,降低噪声干扰。实验结果表明,本文算法模型大小仅为YOLOv4的28.87%,对红外目标的检测精度得到了明显提升。  相似文献   

8.
针对目前主流的目标检测算法存在模型参数过大、不能很好地移植到移动设备端之中应用于辅助驾驶这一问题,本文提出了一种改进YOLOv5s的目标检测算法。首先,将YOLOv5s算法的主干网络CSPDarknet替换为轻量化网络模型MobileNet-V3,解决了网络模型较大、参数较多的问题,减少了网络的深度并提升了数据推断速度;其次,对特征提取网络采用加权双向特征金字塔结构Bi-FPN加强特征提取,融合多尺度特征进而扩大感受野;最后,对损失函数进行优化,使用CIoU为边界框回归损失函数,改善模型原始GIoU收敛速度较慢问题,使预测框更加符合于真实框,同时降低网络训练难度。实验结果表明,改进后算法在KITTI数据集上的mAP相较于YOLOv5s、SSD、YOLOv3、YOLOv4_tiny分别提升了4.4、15.7、12.4、19.6,模型大小相较于YOLOv5s与轻量级网络YOLOv4_tiny分别减少了32.4 MB和21 MB,同时检测速度分别提升了17.6%与43%。本文改进后的算法满足模型小、精确度高的要求,为辅助驾驶中道路目标检测提升检测速度与精度提供了一种解决方案。  相似文献   

9.
近年来,基于深度学习的视觉检测方法在海面舰船目标检测领域中的应用愈加广泛。为了解决传统视觉检测方法检测精度不高,对小目标检测效果不好的问题,提出了一种基于Attention-YOLOv3的海面舰船目标检测方法,有效提高了对舰船目标的检测性能。在对主流的One-stage与Two-stage模型结构及特点的调研分析的基础上,利用YOLOv3的特征提取网络Darknet-53来获取图像特征,通过特征金字塔网络(FPN)网络结构融合特征提取网络中深浅层的语义信息,并添加注意力机制模块来进一步优化网络性能。将改进后的Attention-YOLOv3模型应用到海面舰船检测场景中进行验证,基于搜集到的舰船目标制作成COCO格式的数据集进行训练,使用包含海面舰船目标的图片作为测试集进行测试。实验结果表明,改进后的Attention-YOLOv3网络对比原检测网络模型,解决了小目标检测不敏感的问题,达到了更高的检测效果。  相似文献   

10.
针对将深度学习应用于交通场景下的雷达距离多普勒谱图目标检测任务时,交通目标尺寸小、特征不明显导致目标检测算法出现漏检、误检的问题,提出一种改进的YOLOv5-KFCS模型。首先提出基于K-means++聚类Anchor生成方法,确定最优Anchor尺寸,实现Anchor与实际目标的精准匹配;然后在模型中添加改进的FCBAM注意力模块,增强模型对于模糊目标和小尺寸目标特征的提取能力;接着将CARAFE作为上采样模块,提升网络对背景噪声的过滤能力以增强小目标特征的表征能力;最后将Swin Transformer模块引入到网络末端C3模块中,改善模型网络末端特征图分辨率低的问题。实验结果表明,改进后的YOLOv5-KFCS有效改善了漏检、误检问题,相较基准YOLOv5s平均检测精度提高5.3%,达到了93.5%,检测速度为70 FPS,满足检测实时性,并且综合性能优于其他方法。  相似文献   

11.
疲劳驾驶已经成为威胁驾驶员安全的重要因素.本文设计了一种融合眼睛状态和心跳速率变化的驾驶员疲劳检测系统,分别研究了驾驶员疲劳时眼睛状态和心跳速率的变化规律,改进了已有的疲劳检测算法以适应驾驶环境.由于融合了眼睛检测子系统和心跳速率检测子系统,该系统既减小了光照等环境因素的影响,又克服了心跳速率检测设备有延迟的缺点,具有更好的准确率.实验结果证明该系统具有良好的鲁棒性和实时性.  相似文献   

12.
特征检测与异常检测相结合的入侵检测模型   总被引:1,自引:0,他引:1  
岳仑  杜新华  张华 《通信技术》2003,(11):106-108
介绍了入侵检测技术的基本概念,讨论了几种常见的入侵检测技术,提出特征检测和入侵检测相结合的一种检测技术,建立了模型并分析了实验结果,发现其检测性能更好。  相似文献   

13.
网络入侵检测技术研究   总被引:3,自引:0,他引:3  
对入侵检测作较全面的综述性介绍,首先从入侵、入侵检测的概念出发,接着介绍入侵检测的分类和入侵检测系统的模型,最入对入侵检测的各种方法进行简要分析。  相似文献   

14.
探索一种基于聚类来识别异常的方法,这个方法不需要手动标示的训练数据集却可以探测到很多不同类型的入侵行为.实验结果表明该方法是可行的和有效的,使用它来进行异常检测可以得到探测率和误报率的一个平衡,从而为异常检测问题提供一个较好的解决办法.  相似文献   

15.
频谱感知是认知无线电的重要技术之一,它通过实时感知电磁环境以判断频谱空穴的存在。根据能量检测的检测时间短,以及循环平稳特征检测在低信噪比情况下的检测准确性高的优点,提出了基于能量和循环谱的两步检测算法。通过实验仿真表明,与循环平稳特征检测相比,两步检测的检测时间大幅度缩短,同时检测准确性也得到了提高。  相似文献   

16.
为检测混凝土厚度,研发了基于Windows平台的超声数据分析软件,并根据用户需求设计系统架构和模块功能,以提高软件的可靠性和易用性。该软件采用自定义数据格式,利用多种数字信号处理方法对原始数据进行分析处理,当发射器有效地监测到反射波时,软件根据收集到的数据计算出混凝土厚度。  相似文献   

17.
视频检测、跟踪、识别一直是智能监控、视频检索、模式识别相关领域研究的热点。在此使用FPGA作为系统的控制模块,实现了基于背景寄存检测算法的检测系统。该系统在满足实时性要求的同时,较好地完成了检测任务。并用在QuartusⅡ,ModelSim进行混合仿真,避免了硬件平台的限制,增加了实现的成功率。  相似文献   

18.
A novel envelope detector structure is proposed in this paper that overcomes the traditional trade-off required in these circuits. It improves both the tracking and keeping of the signal and thereby obtains great savings of capacitor area. At the same time, it cancels nonlinearities due to the use of switches when this technique is employed, such as nonlinearities caused by charge injection and, tenders high performance with small ripple (<1%), fast settling (0.4 μs) and high linearity.  相似文献   

19.
故障信号的分析与检测方法   总被引:1,自引:0,他引:1  
张常年  赵红怡 《微电子学》2001,31(6):428-430
讨论了小波变换及其基本性质,探讨了基于小波变换模最大值沿尺度演变的信号突变检测的基本原理与方法。在不同尺度上分析和处理信号的各种频率成分,使信号的奇点、突变点被放大,成为诊断故障信号的手段。  相似文献   

20.
A pattern recognition approach is proposed for tone detection. Three basic tone features are extracted from the signal in the form of power, mean frequency, and spectral concentration. These three features are calculated for each signal sample taken during the decision interval and are represented by points in a three dimensional space.The actual tone detection function is then performed by partitioning the feature space in two decision volumes corresponding to the two alternatives (tone present and absent respectively) and by identifying the presence of associated clusters. A reject option is available when the decision volumes are not complementary, and allows the system to be insensitive to very noisy samples (e.g. impulsive noise).A non-linear classification method is presented which provides adaptive and robust detection in presence of non gaussian noise. Moreover global performance may be optimized on-line for unknown or time varying environments.Hardware and Software simulation results are presented and show good performance in presence of impulsive and interference noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号