首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
边坡位移时间序列是边坡失稳预测中一个重要的参数,本文采用相空间重构技术的混沌时间序列分析法,对其进行了分析,并对时滞系数和嵌入维数等关键参数的确定方法进行了论述。研究表明,这是一种有较好前途的研究方法。  相似文献   

2.
3.
为研究高陡岩质边坡在逐级开挖卸荷下的边坡稳定性,选取位移和边坡稳定性系数作为评价指标,以某建筑用花岗岩矿为工程实例,设计两种开挖方案进行分析,揭示高陡边坡形成的位移演变规律和边坡稳定性系数变化规律,并确定边坡稳定性系数,最大位移、边坡高度与开挖最终边帮角之间的定量关系。研究结果表明:花岗岩类矿靠帮开采模式一般选用境界在地表的开口端保持不变,坑线由外向内靠帮;随着卸荷降段的增加,竖直位移及水平位移均呈增大趋势;随着最终端帮角由44°增至52°,可多采花岗岩矿石量701.72×104 t,多剥离风化层及表土154.56×104 t,有效增加了花岗岩矿的开采,降低了平均剥采比,增加了矿山企业效益;同时,边坡稳定性系数由1.93降至1.60,边坡稳定性系数与端帮角度呈三次函数负相关。研究结果可为高陡岩质矿山设计及参数优化提供借鉴,为边坡监测监控提供一种思路。  相似文献   

4.
改进的瓦斯突出预测模型   总被引:1,自引:0,他引:1  
针对瓦斯突出时间序列的非平稳特性,提出了一种基于经验模态分解和极限学习机的瓦斯突出预测模型。以某矿井工作面实际采集的瓦斯浓度为例,仿真结果表明EMD-ELM模型在训练速度和预测精度上优于ELM和最小二乘支持向量机模型。  相似文献   

5.
近几十年来,滑坡位移预测受到日益重视.为了提高预测精度减少滑坡灾害,该文提出一种基于变分模态分解和长短时记忆网络的滑坡位移预测模型.通过变分模态分解算法将滑坡累积位移分解为多个子位移序列,然后分别采用长短时记忆网络建模和预测子位移的演化趋势,最后重构预测的子位移序列得到累积位移的预测值.通过实测数据与变分模态分解和支持...  相似文献   

6.
针对旋转机械振动信号分析困难的问题,提出一种基于樽海鞘群优化变分模态分解(SSO-VMD)和FCF的旋转机械信号分析方法。利用樽海鞘群优化变分模态分解,确定其参数,对信号进行分解,通过故障相关因子(FCF)筛选合适的IMF分量完成信号重构。经实验验证,该方法可有效去除干扰信息,实现信号的分解与重构。  相似文献   

7.
以某建筑用花岗岩矿为实例,通过有限元数值模拟方法,揭示高陡边坡在形成过程中的位移和应力演变规律。研究结果显示,随着开采深度的递增,边坡的水平及垂直位移与开采深度之间存在显著的三次函数正相关关系,且位移多集中于坡面、坡脚以及岩层交界处;剪应力随着高程的降低而增大,主要集中在坡面、坡脚以及岩层交界处,与水平和垂直方向位移分布相吻合。研究成果不仅为矿山边坡监测设施的合理布局提供了重要参考,也为矿山在开采至特定平台时,提前做好安全工作提供了科学依据。  相似文献   

8.
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA—BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。  相似文献   

9.
BP神经网络的初始连接权重和阈值对露天矿边坡位移预测的精度和收敛速度有重要影响。鉴于粒子群优化(PSO)算法具有全局搜索性能和收敛速度快,引入PSO算法对BP神经网络的初始连接权重和阈值进行全局优化,提出了基于PSO优化BP神经网络的露天矿边坡位移预测模型。将所提出的模型应用于实际案例中,并与BP神经网络进行对比。结果表明:该模型能够提高BP神经网络在露天矿边坡位移预测中的精度和收敛速度,预测结果的最大相对误差和平均相对误差分别是0.566 8%和0.353 0%,具有较好的精度和实际应用价值。  相似文献   

10.
煤矿井下地震信号往往呈现出复杂的波场特性且伴随着大量噪音干扰,导致地震信号的初至拾取精度降低,从而影响地震数据的反演与解释。针对复杂干扰环境下采集的低信噪比地震信号,提出了基于变分模态分解(VMD)和遗传算法优化支持向量机(GA-SVM)的地震噪声压制与初至提取方法,以提高煤矿井下复杂噪声条件下的地震信号质量。采用变分模态分解对含噪地震信号进行自适应分解,得到数个的变分模态分量(IMF);对VMD分解得到的IMF分量进行特征提取,将提取所得的信号特征作为信号有效性判别的依据;利用遗传算法对支持向量机模型进行优化,得到最优的惩罚因子c与核函数参数g;利用优化后的支持向量机模型对IMF分量进行有效性判别并将有效分量重构成高信噪比信号;通过对人工加噪的地震信号应用噪声压制算法,煤矿井下常见的不同类型噪声被有效地压制,验证了算法的可行性;对矿井巷道实采的地震记录进行噪声压制处理,有效地压制了数据中的干扰噪声,极大程度地提高了地震记录的信噪比,使初至拾取得更加准确。结果表明,基于VMD和GA-SVM的地震噪声压制方法可以很好地提取含噪地震记录中的有效信号,提高初至拾取精度,在矿井复杂干扰条件下具有显著的应用潜力,对解决矿井复杂干扰条件下的地震勘探问题有重要意义。  相似文献   

11.
选矿过程中的矿浆浓度是一个重要的生产工艺参数,一般可以通过预测矿浆浓度来提高生产效率。由于矿浆浓度和其他的生产工艺参数往往非线性相关,这给矿浆浓度的预测带来了很大困难。本文针对此问题,基于超限学习机这一面向神经网络的新颖学习算法,提出了一种矿浆浓度预测新算法。首先,使用相空间重构方法对矿浆浓度数据进行预处理,从一维转换到多维。然后,使用基于L2范数的超限学习机算法(ELM-L2)建立时序预测模型,实现预测功能。围绕来自于某矿厂的真实生产数据进行了实验验证,结果显示,针对大规模的数据样本集,所设计的算法与传统神经网络预测算法相比,训练时间大约减少了30%,而预测精度大约提高了48%。实验结果表明了所设计预测算法的有效性。  相似文献   

12.
A new method for predicting the trend of displacement evolution of surrounding rock was presented in this paper. According to the nonlinear characteristics of displacement time series of underground engineering surrounding rock, based on phase space reconstruction theory and the powerful nonlinear mapping ability of support vector machines, the information offered by .the time series datum sets was fully exploited and the non-linearity of the displacement evolution system of surrounding rock was well described. The example suggests that the methods based on phase space reconstruction and modified v-SVR algorithm are very accurate, and the study can help to build the displacement forecast system to analyze the stability of underground engineering surrounding rock.  相似文献   

13.
边坡稳定性受多种复杂因素影响,传统算法很难得到高精度预测结果,为了及时准确地对边坡稳定性做出可靠性分析,提出了改进粒子群优化极限学习机(IPSO-ELM)模型并应用于边坡稳定性预测实例中.首先在粒子群算法(PSO)的基础上,为克服在寻优过程中易出现局部最优的问题,引入自适应权重法,将改进粒子群算法(IPSO)对极限学习...  相似文献   

14.
为提高极限学习机(ELM)模型在弓长岭露天矿边坡稳定性预测中的精度,有效解决ELM模型在训练过程中随机产生的连接权值和隐含层偏置而导致模型稳定性差的问题,引入基于随机权重法改进的粒子群算法(IPSO)进行优化,提出了改进粒子群算法优化极限学习机(IPSO-ELM)模型,将该模型应用到弓长岭露天矿边坡监测的数据中,把预测结果与ELM模型和PSO-ELM模型的预测值进行对比分析。结果表明:IPSO-ELM模型预测值接近于实测值,预测精度高、预测速度快、模型构建合理,在露天矿边坡预测中具有较高的可行性,可作为露天矿边坡预测的一种参考方法。  相似文献   

15.
针对工业现场,尤其是高寒、高海拔地区受气候条件影响,温度变化剧烈,无法准确测量,难以建立精确的温度模型,进而影响生物冶金浸出率的问题,提出一种基于改进鲸鱼算法(EWOA)和核极端学习机(KELM)综合建模的方法。首先从工业现场采集100组实验数据,然后将前66组数据作为训练样本,后34组数据作为测试样本,最后分别采用KELM、WOA-KELM、EWOA-KELM方法建立氧化槽温度预测模型。研究结果表明,EWOA-KELM预测模型的平均绝对误差(MAE)、均方根误差(RMSE)和平均相对百分比误差(MAPE)均比其它几种预测模型的低。该模型具有更高的预测精度和更强的泛化能力,为测量氧化槽的温度变化情况提供了一种新的方法。  相似文献   

16.
:为简化模型结构、解决迭代训练拖延问题,利用海鸥(SOA)算法进行核极限学习机(KELM)重要参数择优,建立基于数据插补和SOA-KELM的岩爆风险预测模型。综合岩爆预测过程中多因素影响,选取单轴抗压强度,单轴抗拉强度等6种指标作为岩爆风险评价指标,搜集93组岩爆实测样本。一方面采用随机过采样补充少数类别样本数据,一方面采用ELMAN神经网络进行缺失数据插补,构建高质量岩爆风险预测样本数据库。最终将预处理后的数据输入4种模型中进行分类预测。结果表明:数据插补后,各模型预测准确率提升5.56%~16.67%。不同情况下,SOA-KELM预测准确率均为最高数值,且数据随机过采样处理并未影响模型预测准确率,融合ELMAN神经网络和SOA-KELM的预测模型可有效应用于岩爆风险预测,为实际岩爆预测提供了新思路。  相似文献   

17.
浮选回收率是浮选过程中重要的生产指标。需要通过人工检测得到的浮选回收率,可知性具有较大的时间延迟,使工人不能及时有效地对生产做出相应控制调整。由于浮选过程相当复杂,变量维数高、关联性强、噪声大、检测信号不完备等因素,难以建立较精确的回收率预测模型。然而,人工智能与机器学习技术能在机理不清楚、信息不完备的情况下,对复杂系统建立基于数据驱动的经验模型。因此,本文为提高回收率检测的及时性、有效性,在分析浮选过程相关因素影响的基础上,提出基于核极限学习机建立浮选回收率的预测模型。仿真实验结果表明,该建模方法可有效辨识浮选过程中,输入数据与回收率测量值之间的非线性关系,且具有更高的预测精度与训练性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号