首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
通过Aspen Plus软件模拟一氧化碳变换反应,分析汽气比、温度、压力等因素对一氧化碳变换率、变换炉出口温度的影响,从而为生产企业提供一氧化碳变换反应的数据参考,为解决实际运行中出现的问题提供分析依据。  相似文献   

2.
运用Aspen Plus软件中3种不同反应器模型组合成RPlug-RPlug-RPlug,RPlug-RPlug-RGbbis和RPlug-RPlug-RCSTR模型,分别对CO变换流程进行模拟。对3个组合模型的模拟结果进行分析发现:RPlug-RPlug-RPlug组合模型模拟经过整个变换炉后CO的总转化率为68.5%,比实际结果低7%左右;RPlug-RPlug-RGbbis组合模型模拟经过整个变换炉后CO的总转化率为99.33%,是不可能实现的过程;RPlug-RPlug-RCSTR组合模型模拟经过整个变换炉后CO的总转化率为74.2%,与实际情况的结果最相近,为最适宜的CO变换流程模拟模型,能够真实客观地模拟出整个变换流程。  相似文献   

3.
简要介绍了大型化工流程模拟软件Aspen Plus,并对其构建煤制天然气流程模型的方法进行概述。同时,针对近年来Aspen Plus软件在煤制天然气领域中的工艺模拟、反应器研究、设计优化等方面的应用情况进行综述,并指出当前研究的不足和今后的发展方向。  相似文献   

4.
高积勤 《山东化工》2014,(2):164-166
采用Aspen Plus工程软件对利用壳牌粉煤气化生产甲醇过程中的CO变换工段进行模拟。根据壳牌煤气化粗合成气气组成及CO变换工段的高温高压条件,采用RK-ASPEN物性方法和ELECNRTL物性方法,采用RSTOIC反应器模型模拟CO变换炉,当CO变换率为67.74%时,出变换炉气体干气中的CO物质的量含量可以控制为22.95%。当进入变换炉的粗合成气占总气量的71.13%时,出变换工段的混合气体中CO物质的量的含量为21%~24%。  相似文献   

5.
基于Aspen Plus软件的煤气化过程模拟评述   总被引:1,自引:0,他引:1  
煤气化技术是实现煤清洁利用的有效途径,是煤炭转化的关键技术。通过利用Aspen Plus过程模拟软件建立气化炉模型,可以低成本、低风险、高效率的研究评估气化炉的气化性能和考察各项操作条件对气化产物的影响,寻找最佳操作点。总结了国内外科研机构已报道的各型基于Aspen Plus软件开发的气流床气化炉模型,分析了各种气化炉模型的区别与联系,并根据实践经验提出了煤气化过程模拟的发展方向。  相似文献   

6.
利用Aspen Plus模拟了甲醇合成过程,并分析了循环比对粗甲醇产量、碳转化率、粗甲醇含量及循环气压缩机功耗的影响。结果表明:粗甲醇中甲醇含量为93.32mol%,反应器1出口物料中H2、CO、CO2、甲醇含量分别为73.46mol%、4.47mol%、2.63mol%、13.80mol%,反应器2出口物料中H2、CO、CO2、甲醇含量分别为71.93mol%、2.35mol%、2.58mol%、17.03mol%;循环比由1.06增加到2.26,粗甲醇产量由2430kmol/h提高到2505kmol/h,碳转化率由96.02%提高到98.25%,粗甲醇含量由93.5mol%降低至92.8mol%,循环气压缩机功耗由899kW增加到1788kW。  相似文献   

7.
采用模拟软件Aspen Plus对某厂大型煤化工甲醇四塔精馏过程进行稳态模拟计算和分析,结果表明,应用物性方法 UNIFAC-DMD能有效模拟汽液平衡数据,模拟结果与工厂采集数据吻合良好。进行了常压塔侧线抽提位置分析、回流比对产品各组分浓度影响及精馏塔水力学分析等研究,提供了可行的精馏操作方案。  相似文献   

8.
原满  刘亮  田红  朱超 《广东化工》2012,(12):123-125
文章以过程模拟软件Aspen Plus为工具,建立了以高温空气为气化剂的固定床煤气化的数学模型,模拟计算了逆流式固定床气化的制气过程;并利用该模型模拟研究了不同空煤比以及不同的空气预热温度对煤气化指标的影响,结果表明:在相同空煤比与汽煤比的工况下,提高空气的预热温度可以使气化过程得到强化。  相似文献   

9.
刘娜  黄雪莉 《煤炭转化》2013,36(1):65-67
运用Aspen Plus软件进行了煤干燥过程的模拟计算,研究了煤干燥的主要操作参数(干燥介质种类、温度、流量和湿度)与干煤出口温度之间的关系.结果表明,干煤出口温度与干燥介质种类并无显著关系,干煤出口温度随着干燥介质的温度、流量的增大先缓慢增加后迅速增加.当干燥介质流量较小时,干煤出口温度随着干燥介质含水量的增加略有增加;而当干燥介质流量较大时干煤出口温度随着干燥介质含水量基本不变.  相似文献   

10.
基于Aspen Plus的粉煤气化模拟   总被引:6,自引:0,他引:6  
以Aspen Plus为模拟工具,选择反应平衡模型,并应用Gibbs自由能最小化方法建立了Shell粉煤气化模型;通过对神华、沾化和天碱煤种的气化模拟,对建立的模型进行了检验,结果表明:用N2输送粉煤的气化过程能够很好地模拟,而用CO2输送粉煤的气化过程模拟偏差较大.以沾化煤种为例,检验了气化炉散热损失取煤总热值约2%的合理性;研究了不同操作条件下的气化性能,结果表明:提高温度和压力可使气化过程得到强化.  相似文献   

11.
新建于内陆地区的炼化一体化装置运行过程中,轻烃回收产生部分重碳四、丁二烯抽提和MTBE产生部分剩余碳四,混合这部分碳四烃类,经饱和加氢后作为乙烯裂解原料,使原料得以充分利用。模拟不同烯烃含量的混合碳四饱和加氢过程,并将其结果分别与设计要求和实际运行结果对比,讨论装置的运行状况及产品的应用。  相似文献   

12.
王国荣 《广州化工》2010,38(6):230-233
利用Aspen Plus流程模拟软件,对液化气分离装置进行了模拟,模拟结果与实际生产比较吻合。在此基础上,利用灵敏度分析工具,对塔压,回流比以及塔底抽出量等重要操作参数进行了优化。通过操作参数的优化,液化气分离装置的分离效果有了显著的提高。  相似文献   

13.
卢中民 《广东化工》2010,37(3):96-97
为确定一氧化碳变换中冷凝水的适宜喷入量,采用MATLAB工程计算软件进行数值计算和优化,建立了喷水量与变换率关系方程y=5.98×10-6x3-1.93×10-3x2+2.02×10-1x-6.21,并成功得出生产条件下的适宜喷入量91.2kmol·h,为生产和控制提供参考或依据。  相似文献   

14.
流程模拟软件在化工中的应用非常广泛,本文主要阐述流程模拟软件在气相密度计算,压缩因子的计算,密度随温度的变化,不同压力下的沸点,物质性质的估算,二元交互参数,变压精馏等方面的应用,对化工设计有指导作用。  相似文献   

15.
用Aspen Plus对反应精馏的模拟计算   总被引:3,自引:0,他引:3  
樊艳良 《上海化工》2007,32(5):14-19
以甲醇和醋酸的酯化反应为例,介绍了用Aspen Plus软件模拟计算反应精馏过程的方法。计算过程包括:(1)对反应精馏塔模型进行合理的简化;(2)选取合适的数学模型和热力学模型;(3)选取合适的参数。计算初步确定了最佳回流比,合理的甲醇过量程度,并通过灵敏度分析得出灵敏板的大概位置。本计算结果可作为反应精馏实验的基础。  相似文献   

16.
Gas‐to‐liquid (GTL) processes are becoming attractive due to the increasing price of crude oil. Process simulation analysis on the integrated GTL process is essential as part of an extended process integration analysis of the research subjects. The two sub‐process models for the GTL process, i.e., the syngas generation process and the Fischer Tropsch synthesis (FTS) process, are analyzed in detail with ASPEN Plus. The autothermal reforming process (ATR) is analyzed using Aspen Plus based on the Gibbs reactor model, while FTS is simulated with ASPEN Plus based on detailed kinetic models for industrial iron and cobalt catalysts. Integrated GTL processes with iron and cobalt‐based catalysts were simulated using ASPEN Plus. The optimal flowsheet structures were selected for each catalyst based on the overall performance in terms of thermal and carbon efficiency and product distributions. For the cobalt‐based catalyst, the full conversion concept without CO2 removal from the FT tail gas is optimal. On the other hand, the once‐through concept with two series reactors and CO2 removal from raw syngas is considered optimal for the iron‐based catalyst. The thermal efficiency to crude products is likely to be ca. 60 % for the cobalt‐based catalyst, whereas it is in the range of 49–55 % for the iron‐based catalyst. The carbon efficiency using the water‐gas shift reaction is lower using the iron‐based catalyst (61–68 %) than the cobalt‐based catalyst (73–75 %). As expected, the cobalt‐based catalyst is more active and selective, which offers better selectivity towards C5+ (75–79 %). The selectivity towards C5+ for the iron‐based catalyst lies in the range 63–75 %.  相似文献   

17.
硫磺制酸转化工序Aspen Plus流程模拟   总被引:2,自引:0,他引:2  
流程模拟程序可预测工艺参数的变更对装置性能的影响,从而实现工艺的优化,故广泛地应用于硫酸装置设计和工艺研究中。阐述了Aspen Plus流程模拟程序在硫磺制酸转化工序和余热回收系统中的应用案例,详细介绍了流程模型的建立步骤和方法,设计优化模拟方案及结果分析,认为模拟结果与生产实际数据基本吻合,该方法是合理有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号