首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-β (TGF-β) signaling triggers diverse biological actions in inflammatory diseases. In tissue fibrosis, it acts as a key pathogenic regulator for promoting immunoregulation via controlling the activation, proliferation, and apoptosis of immunocytes. In cancer, it plays a critical role in tumor microenvironment (TME) for accelerating invasion, metastasis, angiogenesis, and immunosuppression. Increasing evidence suggest a pleiotropic nature of TGF-β signaling as a critical pathway for generating fibrotic TME, which contains numerous cancer-associated fibroblasts (CAFs), extracellular matrix proteins, and remodeling enzymes. Its pathogenic roles and working mechanisms in tumorigenesis are still largely unclear. Importantly, recent studies successfully demonstrated the clinical implications of fibrotic TME in cancer. This review systematically summarized the latest updates and discoveries of TGF-β signaling in the fibrotic TME.  相似文献   

2.
3.
4.
Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-β is intimately involved in the fibrogenic process. When activated, TGF-β promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-β1 tissue expression) involved in the TGF-β1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-β1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-β pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-β inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.  相似文献   

5.
Renal fibrosis is an irreversible and progressive process that causes severe dysfunction in chronic kidney disease (CKD). The progression of CKD stages is highly associated with a gradual reduction in serum Klotho levels. We focused on Klotho protein as a key therapeutic factor against CKD. Urine-derived stem cells (UDSCs) have been identified as a novel stem cell source for kidney regeneration and CKD treatment because of their kidney tissue-specific origin. However, the relationship between UDSCs and Klotho in the kidneys is not yet known. In this study, we discovered that UDSCs were stem cells that expressed Klotho protein more strongly than other mesenchymal stem cells (MSCs). UDSCs also suppressed fibrosis by inhibiting transforming growth factor (TGF)-β in HK-2 human renal proximal tubule cells in an in vitro model. Klotho siRNA silencing reduced the TGF-inhibiting ability of UDSCs. Here, we suggest an alternative cell source that can overcome the limitations of MSCs through the synergetic effect of the origin specificity of UDSCs and the anti-fibrotic effect of Klotho.  相似文献   

6.
Solid platelet-rich fibrin (PRF), consisting of coagulated plasma from fractionated blood, has been proposed to be a suitable carrier for recombinant bone morphogenetic protein 2 (BMP2) to target mesenchymal cells during bone regeneration. However, whether solid PRF can increase the expression of BMPs in mesenchymal cells remains unknown. Proteomics analysis confirmed the presence of TGF-β1 but not BMP2 in PRF lysates. According to the existing knowledge of recombinant TGF-β1, we hypothesized that PRF can increase BMP2 expression in mesenchymal cells. To test this hypothesis, we blocked TGF-β receptor 1 kinase with SB431542 in gingival fibroblasts exposed to PRF lysates. RT-PCR and immunoassays confirmed that solid PRF lysates caused a robust SB431542-dependent increase in BMP2 expression in gingival fibroblasts. Additionally, fractions of liquid PRF, namely platelet-poor plasma (PPP) and the buffy coat (BC) layer, but not heat-denatured PPP (Alb-gel), greatly induced the expression of BMP2 in gingival fibroblasts. Even though PRF has no detectable BMPs, PRF lysates similar to recombinant TGF-β1 had the capacity to provoke canonical BMP signaling, as indicated by the nuclear translocation of Smad1/5 and the increase in its phosphorylation. Taken together, our data suggest that PRF can activate TGF-β receptor 1 kinase and consequently induce the production of BMP2 in cells of the mesenchymal lineage.  相似文献   

7.
Renal fibrosis is a chronic pathological process that seriously endangers human health. However, the current therapeutic options for this disease are extremely limited. Previous studies have shown that signaling factors such as JAK2/STAT3, Smad3, and Myd88 play a regulatory role in renal fibrosis, and β-elemene is a plant-derived sesquiterpenoid organic compound that has been shown to have anti-inflammatory, anti-cancer, and immunomodulatory effects. In the present study, the anti-fibrotic effect of β-elemene was demonstrated by in vivo and in vitro experiments. It was shown that β-elemene inhibited the synthesis of extracellular matrix-related proteins in unilateral ureteral obstruction mice, and TGF-β stimulated rat interstitial fibroblast cells, including α-smooth muscle actin, vimentin, and connective tissue growth factor, etc. Further experiments showed that β-elemene reduced the expression levels of the above-mentioned fibrosis-related proteins by blocking the phosphorylation of JAK2/STAT3, Smad3, and the expression or up-regulation of MyD88. Notably, knockdown of MyD88 attenuated the phosphorylation levels of STAT3 and Smad3 in TGF-β stimulated NRK49F cell, which may be a novel molecular mechanism by which β-elemene affects renal interstitial fibrosis. In conclusion, this study elucidated the anti-interstitial fibrosis effect of β-elemene, which provides a new direction for future research and development of drugs related to chronic kidney disease.  相似文献   

8.
Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.  相似文献   

9.
Cardiac fibrosis is a pathological process associated with the development of heart failure. TGF-β and WNT signaling have been implicated in pathogenesis of cardiac fibrosis, however, little is known about molecular cross-talk between these two pathways. The aim of this study was to examine the effect of exogenous canonical WNT3a and non-canonical WNT5a in TGF-β-activated human cardiac fibroblasts. We found that WNT3a and TGF-β induced a β-catenin-dependent response, whereas WNT5a prompted AP-1 activity. TGF-β triggered profibrotic signatures in cardiac fibroblasts, and co-stimulation with WNT3a or co-activation of the β-catenin pathway with the GSK3β inhibitor CHIR99021 enhanced collagen I and fibronectin production and development of active contractile stress fibers. In the absence of TGF-β, neither WNT3a nor CHIR99021 exerted profibrotic responses. On a molecular level, in TGF-β-activated fibroblasts, WNT3a enhanced phosphorylation of TAK1 and production and secretion of IL-11 but showed no effect on the Smad pathway. Neutralization of IL-11 activity with the blocking anti-IL-11 antibody effectively reduced the profibrotic response of cardiac fibroblasts activated with TGF-β and WNT3a. In contrast to canonical WNT3a, co-activation with non-canonical WNT5a suppressed TGF-β-induced production of collagen I. In conclusion, WNT/β-catenin signaling promotes TGF-β-mediated fibroblast-to-myofibroblast transition by enhancing IL-11 production. Thus, the uncovered mechanism broadens our knowledge on a molecular basis of cardiac fibrogenesis and defines novel therapeutic targets for fibrotic heart diseases.  相似文献   

10.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses induced by recurrent epithelial cell damage and excessive extracellular matrix accumulation result in pulmonary fibrosis. Although there is currently no curative therapy for IPF, two medications, pirfenidone and nintedanib, have been introduced based on understanding the pathogenesis of the disease. In this review, we discuss advances in understanding IPF pathogenesis, highlighting epithelial–mesenchymal transition (EMT), the ubiquitin-proteasome system, and endothelial cells. TGF-β is a central regulator involved in EMT and pulmonary fibrosis. HECT-, RING finger-, and U-box-type E3 ubiquitin ligases regulate TGF-β-Smad pathway-mediated EMT via the ubiquitin-proteasome pathway. p27 degradation mediated by the SCF-type E3 ligase, Skp2, contributes to the progression of pulmonary fibrosis by promotion of either mesenchymal fibroblast proliferation, EMT, or both. In addition to fibroblasts as key effector cells in myofibroblast differentiation and extracellular matrix deposition, endothelial cells also play a role in the processes of IPF. Endothelial cells can transform into myofibroblasts; therefore, endothelial–mesenchymal transition can be another source of myofibroblasts.  相似文献   

11.
12.
The 129sv mouse strain is particularly sensitive to experimental immune-mediated nephritis. Previous studies have indicated that transforming growth factor-β (TGF-β) plays a critical role in both immune modulation and tissue fibrogenesis in various diseases and that its biological activities are exerted via the SMAD family. In this study, we aimed to determine whether TGF-β/SMAD signaling is essential for the development of immune-mediated nephritis in 129sv mice. Relative to C57BL/6J control mice with anti-glomeruli basement membrane (GBM) nephritis, 129sv mice with anti-GBM nephritis exhibited increased renal collagen deposition. Additionally, higher mRNA levels of pro-collagen and collagen IV, higher serum levels of active and total TGF-β1, and increased TGF-β1, TGF-βIIR, and phosphorylated SMAD expression were detected in these mice. Deletion of Smad3 in 129sv mice ameliorated anti-GBM induced nephritis, including crescentic glomerulonephritis. Collectively, these findings indicate that the heightened experimental nephritis and fibrotic disease in the 129sv strain of mice are regulated by SMAD3, which could be a potential therapeutic target for immune-mediated nephritis.  相似文献   

13.
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.  相似文献   

14.
The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-β1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-β signaling in HNECs.  相似文献   

15.
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.  相似文献   

16.
17.
Cyclosporine A (CsA) is a nephrotoxicant that causes fibrosis via induction of epithelial–mesenchymal transition (EMT). The flavonoid chrysin has been reported to have anti-fibrotic activity and inhibit signaling pathways that are activated during EMT. This study investigated the nephroprotective role of chrysin in the prevention of CsA-induced renal fibrosis and elucidated a mechanism of inhibition against CsA-induced EMT in proximal tubule cells. Treatment with chrysin prevented CsA-induced renal dysfunction in Sprague Dawley rats measured by blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Chrysin inhibited CsA-induced tubulointerstitial fibrosis, characterized by reduced tubular damage and collagen deposition. In vitro, chrysin significantly inhibited EMT in LLC-PK1 cells, evidenced by inhibition of cell migration, decreased collagen expression, reduced presence of mesenchymal markers and elevated epithelial junction proteins. Furthermore, chrysin co-treatment diminished CsA-induced TGF-β1 signaling pathways, decreasing Smad 3 phosphorylation which lead to a subsequent reduction in Snail expression. Chrysin also inhibited activation of the Akt/ GSK-3β pathway. Inhibition of both pathways diminished the cytosolic accumulation of β-catenin, a known trigger for EMT. In conclusion, flavonoids such as chrysin offer protection against CsA-induced renal dysfunction and interstitial fibrosis. Chrysin was shown to inhibit CsA-induced TGF-β1-dependent EMT in proximal tubule cells by modulation of Smad-dependent and independent signaling pathways.  相似文献   

18.
19.
The preparation of platelet-rich fibrin (PRF) requires blood centrifugation to separate the yellow plasma from the red erythrocyte fraction. PRF membranes prepared from coagulated yellow plasma are then transferred to the defect sites to support tissue regeneration. During natural wound healing, however, it is the unfractionated blood clot (UBC) that fills the defect site. It is unclear whether centrifugation is necessary to prepare a blood-derived matrix that supports tissue regeneration. The aim of the present study was to compare lysates prepared from PRF and UBC based on bioassays and degradation of the respective membranes. We report here that lysates prepared from PRF and UBC membranes similarly activate TGF-β signaling, as indicated by the expression of interleukin 11 (IL-11), NADPH oxidase 4 (NOX-4) and proteoglycan 4 (PRG4) in gingival fibroblasts. Consistently, PRF and UBC lysates stimulated the phosphorylation and nuclear translocation of Smad3 in gingival fibroblasts. We further observed that PRF and UBC lysates have comparable anti-inflammatory activity, as shown by the reduction in lipopolysaccharide (LPS)-induced IL-6, inducible nitric oxidase synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in RAW264.7 cells. Moreover, inflammation induced by Poly (1:C) HMW and FSL-1, which are agonists of Toll-like receptor (TLR) 3 and 2/6, respectively, was reduced by both PRF and UBC. PRF and UBC lysates reduced the nuclear translocation of p65 in LPS-induced RAW264.7 cells. In contrast to the similar activity observed in the bioassays, UBC membranes lack the structural integrity of PRF membranes, as indicated by the rapid and spontaneous disintegration of UBC membranes. We show here that the lysates prepared from PRF and UBC possess robust TGF-β and anti-inflammatory activity. However, visual inspection of the PRF and UBC membranes confirmed the negative impact of erythrocytes on the structural integrity of membranes prepared from whole blood. The data from the present study suggest that although both UBC and PRF have potent TGF-β and anti-inflammatory activity, UBC does not have the strength properties required to be used clinically to prepare applicable membranes. Thus, centrifugation is necessary to generate durable and clinically applicable blood-derived membranes.  相似文献   

20.
Allografts consisting of demineralized bone matrix (DBM) are supposed to retain the growth factors of native bone. However, it is not clear if transforming growth factor β1 (TGF-β1) is maintained in the acid-extracted human bone. To this aim, the aqueous solutions of supernatants and acid lysates of OraGRAFT® Demineralized Cortical Particulate and OraGRAFT® Prime were prepared. Exposing fibroblasts to the aqueous solution caused a TGF-β receptor type I kinase-inhibitor SB431542-dependent increase in interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4) expression. Interleukin 11 expression and the presence of TGF-β1 in the aqueous solutions were confirmed by immunoassay. Immunofluorescence further confirmed the nuclear translocation of Smad2/3 when fibroblasts were exposed to the aqueous solutions of both allografts. Moreover, allografts released matrix metalloprotease-2 activity and blocking proteases diminished the cellular TGF-β response to the supernatant. These results suggest that TGF-β is preserved upon the processing of OraGRAFT® and released by proteolytic activity into the aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号