首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。  相似文献   

2.
针对充油变压器绝缘故障诊断的三比值法的局限性,建立以变压器油中溶解气体含量为样本数据,对不同的隐含层数目进行仿真分析,通过比较确定了适用于变压器绝缘故障诊断的BP神经网络模型。研究表明,这种方法提高了神经网络的收敛速度,符合电力变压器故障诊断系统的实际情况,准确率高。  相似文献   

3.
改进小波网络在油浸式变压器故障诊断中的应用   总被引:2,自引:1,他引:2  
方健  彭辉  李自品  舒乃秋 《高压电器》2011,47(11):115-120
小波网络是近年来神经网络研究中的一个新分支,是结合小波变换理论与神经网络的思想构造的一种新的神经网络模型.笔者构造的前馈小波神经网络是将小波分析与BP神经网络融合,以Gauss小波及其伸缩平移系作为隐含层小波基函数并且对小波神经网络做了一些改进.选择了300组油中溶解气体含量作为前馈小波神经网络训练及故障识别的样本,并...  相似文献   

4.
深度学习神经网络在电力变压器故障诊断中的应用   总被引:1,自引:0,他引:1  
石鑫  朱永利 《电力建设》2015,36(12):116-122
由于电力变压器发生故障时油色谱在线监测数据无标签,工程现场往往会得到大量无标签故障样本,而传统的故障诊断方法在对变压器故障类型进行判别时往往无法充分利用这些无标签故障样本。该文基于深度学习神经网络(deep learning neural network,DLNN),构建了相应的分类模型,分析并用典型数据集对其分类性能进行测试。在此基础上提出一种电力变压器故障诊断新方法,它能够有效利用大量电力变压器油色谱在线监测无标签数据和少量故障电力变压器油中溶解气体分析(dissolved gas-in-oil analysis,DGA)实验数据进行训练,并以概率形式给出故障诊断结果,具有更优的故障判别性能,能够为变压器的检修提供更为准确的参考信息。工程实例测试结果表明,该方法正确可行,诊断性能优于三比值、BP神经网络和支持向量机的方法,适用于电力变压器的故障诊断。  相似文献   

5.
程相杰  高沁翔 《电气技术》2007,(11):58-59,62
基于模糊隶属度和BP神经元网络,提出了将模糊神经网络应用于变压器油中溶解气体故障诊断的方法。该方法采用了由输入层、输出层、隐含层和模糊化层组成的一种四层前向模糊神经网络,并利用模糊理论预处理数据,建立了基于模糊神经网络的变压器故障诊断模型。结果表明,该方法对变压器进行故障检剥诊断是有效的。  相似文献   

6.
对向传播(CP)算法是一种有教师学习和无教师学习算法的混合体,既具有良好的模式识别性能,又能很好地解决反馈型神经网络的收敛问题。笔者提出了基于CP分类器人工神经网络的变压器故障诊断方法,建立了CP组合神经网络模型,通过比较不同训练情况下的正判率来确定CP网络中的训练次数和竞争层神经元的个数。实例证明该模型诊断结果的正判率比改良电协研法和IEC三比值法有较大的提高,具有较高的诊断准确率和应用价值。  相似文献   

7.
基于组合决策树的油浸式电力变压器故障诊断   总被引:10,自引:5,他引:10  
提出了一种利用属于模式识别范畴的决策树C4.5法进行变压器故障诊断的方法。由于C4.5方法可方便地处理连续特征模式且有从样本学习判定规则的功能,因此应用中显示了该方法对于变压器故障诊断的适用性。在讨论变压器故障空间的基础上,针对已积累的故障变压器的大量油中溶解气体等数据,考察了各类故障的特征偏置,并在此基础上构造出组合决策树诊断模型,实现了变压器故障由粗到细的逐级划分,有利于提高诊断的准确性。实例表明该模型的有效性。  相似文献   

8.
在对变压器常见故障进行介绍的基础上,针对BP神经网络存在的缺陷,提出了经量子免疫优化的BP神经网络算法,通过与不同算法的对比,验证了该算法的准确性和快速性。  相似文献   

9.
灰色神经网络在变压器故障诊断中的应用   总被引:2,自引:3,他引:2  
针对变压器故障类型受油中溶解多种气体含量的影响,为提高变压器故障诊断的准确性,笔者使用灰色神经网络建立故障诊断模型,拟合输入与输出之间的复杂非线性函数关系,结果证明了该方法的可行性。  相似文献   

10.
模糊神经网络在变压器故障诊断中的应用   总被引:11,自引:8,他引:11  
提出了与神经网络结合的模糊变压器故障诊断新方法 ,克服了一般模糊诊断学习困难的局限 ;通过与模糊判决矩阵的对应关系 ,发现神经网络系统的权值矩阵就是模糊诊断里面的判决矩阵。模糊神经网络、组合神经网络和判决树 3种方法对故障样本的正判率分别为 90 .4 %、75 .4 %、83.3% ,这表明模糊神经网络方法的有效性与可行性 ,它弥补了DGA试验相近故障识别率低的不足 ,克服了组合神经网络无“可塑性”的缺陷 ,避免了判决树对样本选择的强烈依赖 ,使故障诊断准确度大为提高 ;也说明了DGA和其它电气试验相结合综合分析的必要  相似文献   

11.
分析变压器油中溶解气体含量进行变压器故障诊断的关键是找到油中溶解气体含量和故障之间的非线性关系.针对已有检测方法诊断准确性不高的问题,提出不基于Fourier变换,而是利用细分的方法构造一类新的具有加权性质的小波函数.将小波函数作为前馈神经网络的隐含层函数并优化网络的学习率,构造出加权小波神经网络处理变压器油中溶解气体含量数据.通过实际故障数据验证,此方法较已有的诊断方法准确性更高,在同等计算精度下速度更快,进而提高了变压器故障诊断的效率.  相似文献   

12.
分析变压器油中溶解气体含量进行变压器故障诊断的关键是找到油中溶解气体含量和故障之间的非线性关系。针对已有检测方法诊断准确性不高的问题,提出不基于Fourier变换,而是利用细分的方法构造一类新的具有加权性质的小波函数。将小波函数作为前馈神经网络的隐含层函数并优化网络的学习率,构造出加权小波神经网络处理变压器油中溶解气体含量数据。通过实际故障数据验证,此方法较已有的诊断方法准确性更高,在同等计算精度下速度更快,进而提高了变压器故障诊断的效率。  相似文献   

13.
BP神经网络在变压器故障诊断中的应用   总被引:7,自引:1,他引:7  
基于BP神经网络理论设计了以气体浓度为输入、故障类型为输出的变压器故障诊断系统,并进行了计算机仿真。  相似文献   

14.
多神经网络方法在变压器油色谱故障诊断中的应用   总被引:2,自引:1,他引:2  
徐志钮  律方成 《高压电器》2005,41(3):206-208
电力变压器的故障诊断对于变压器的维护起着至关重要的作用,诊断的可信度能给变压器维护提供更好的依据。为了克服单个神经网络不能给出诊断结果可信度的缺点,将多神经网络方法引入到变压器油色谱故障诊断中,利用多个神经网络对变压器诊断结果的方差给出了诊断结果的可信度;同时将多个网络输出的平均作为网络的诊断结果,减少了网络诊断的误差,提高了诊断的准确率。故障变压器实例验证了多神经网络方法的有效性。  相似文献   

15.
神经网络应用于电力变压器故障诊断   总被引:34,自引:5,他引:34       下载免费PDF全文
将电力变压器油气分析法作为检测数据来源,利用神经网络这一强有力的故障诊断工具,有效地诊断电力变压内部故障。仿真结果表明,用神经网络诊断变压器故障具有更加优秀的性能。文中,作者采用的BP网络模型及算法,并对网络训练过程中一些技巧问题进行了讨论。  相似文献   

16.
李天云  应鸿 《电网技术》1996,20(11):51-52
本基于局部特征量的神经网络方法对变压器的故障诊断进行了新的探索,建立了相应的故障诊断的神经网络压缩模型,实例诊断结果证明了这种方法的有效性。本方法能够诊断传统的三比值法无法诊断的故障,对于其它的故障诊断也有一定的参考意义。  相似文献   

17.
结合多元统计分析的神经网络在变压器故障诊断中的应用   总被引:6,自引:2,他引:4  
钱政  严璋  钱嵘  周家利 《变压器》2000,37(4):32-35
在决策树基础上,建立地变压器故障诊断的组合神经网络模型,提出了一种基于多元统计分析的训练样本及输入矢量选择方法,并给出了网络验证与仿真结果。  相似文献   

18.
基于Elman神经网络的油浸式电力变压器故障诊断   总被引:1,自引:0,他引:1  
油浸式电力变压器的运行状态直接影响到电力系统的安全与稳定,对其进行故障诊断具有重要的现实意义。依据Elman神经网络具有动态处理数据及对历史数据敏感的能力,提出了将它用于油浸式电力变压器的故障诊断新方法,并给出了其具体的实现,同时对故障诊断的结果,将Elman网络与BP网络进行了比较。检测结果表明,Elman网络具有区别油浸式电力变压器不同故障类型的能力。  相似文献   

19.
分析了Levenberg-Marquardt(L-M)算法和RPROP算法的原理,并将它们应用于充油电气设备故障诊断神经网络的训练。构造了满足要求的神经网络,分别使用了L-M算法和RPROP算法进行训练和诊断。结果表明,两种神经网络均能快速收敛到较高的精度;对训练所得网络分别使用没有训练过的样本进行诊断,两种算法的诊断准确率分别是86.47%、92.00%。  相似文献   

20.
基于邻域粒子群优化神经网络的变压器故障诊断   总被引:1,自引:3,他引:1  
贾嵘  徐其惠  李辉  刘伟 《高压电器》2008,44(1):8-10,19
为了提高变压器故障诊断正判率,提出了一种邻域粒子群算法优化BP神经网络的电力变压器油中气体分析(DGA)方法,即通过相关统计分析和数据的预处理,选择变压器油中典型气体作为神经网络的输入,然后利用训练好的邻域粒子群算法优化后的神经网络进行变压器故障类型诊断。试验结果表明,该类方法具有很好的分类效果,较好地解决了变压器放电和过热共存时故障的难分辨问题,对故障类型的正判率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号