共查询到20条相似文献,搜索用时 15 毫秒
1.
变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。 相似文献
2.
3.
4.
深度学习神经网络在电力变压器故障诊断中的应用 总被引:1,自引:0,他引:1
由于电力变压器发生故障时油色谱在线监测数据无标签,工程现场往往会得到大量无标签故障样本,而传统的故障诊断方法在对变压器故障类型进行判别时往往无法充分利用这些无标签故障样本。该文基于深度学习神经网络(deep learning neural network,DLNN),构建了相应的分类模型,分析并用典型数据集对其分类性能进行测试。在此基础上提出一种电力变压器故障诊断新方法,它能够有效利用大量电力变压器油色谱在线监测无标签数据和少量故障电力变压器油中溶解气体分析(dissolved gas-in-oil analysis,DGA)实验数据进行训练,并以概率形式给出故障诊断结果,具有更优的故障判别性能,能够为变压器的检修提供更为准确的参考信息。工程实例测试结果表明,该方法正确可行,诊断性能优于三比值、BP神经网络和支持向量机的方法,适用于电力变压器的故障诊断。 相似文献
5.
基于模糊隶属度和BP神经元网络,提出了将模糊神经网络应用于变压器油中溶解气体故障诊断的方法。该方法采用了由输入层、输出层、隐含层和模糊化层组成的一种四层前向模糊神经网络,并利用模糊理论预处理数据,建立了基于模糊神经网络的变压器故障诊断模型。结果表明,该方法对变压器进行故障检剥诊断是有效的。 相似文献
6.
7.
基于组合决策树的油浸式电力变压器故障诊断 总被引:10,自引:5,他引:10
提出了一种利用属于模式识别范畴的决策树C4.5法进行变压器故障诊断的方法。由于C4.5方法可方便地处理连续特征模式且有从样本学习判定规则的功能,因此应用中显示了该方法对于变压器故障诊断的适用性。在讨论变压器故障空间的基础上,针对已积累的故障变压器的大量油中溶解气体等数据,考察了各类故障的特征偏置,并在此基础上构造出组合决策树诊断模型,实现了变压器故障由粗到细的逐级划分,有利于提高诊断的准确性。实例表明该模型的有效性。 相似文献
8.
9.
10.
模糊神经网络在变压器故障诊断中的应用 总被引:11,自引:8,他引:11
提出了与神经网络结合的模糊变压器故障诊断新方法 ,克服了一般模糊诊断学习困难的局限 ;通过与模糊判决矩阵的对应关系 ,发现神经网络系统的权值矩阵就是模糊诊断里面的判决矩阵。模糊神经网络、组合神经网络和判决树 3种方法对故障样本的正判率分别为 90 .4 %、75 .4 %、83.3% ,这表明模糊神经网络方法的有效性与可行性 ,它弥补了DGA试验相近故障识别率低的不足 ,克服了组合神经网络无“可塑性”的缺陷 ,避免了判决树对样本选择的强烈依赖 ,使故障诊断准确度大为提高 ;也说明了DGA和其它电气试验相结合综合分析的必要 相似文献
11.
分析变压器油中溶解气体含量进行变压器故障诊断的关键是找到油中溶解气体含量和故障之间的非线性关系.针对已有检测方法诊断准确性不高的问题,提出不基于Fourier变换,而是利用细分的方法构造一类新的具有加权性质的小波函数.将小波函数作为前馈神经网络的隐含层函数并优化网络的学习率,构造出加权小波神经网络处理变压器油中溶解气体含量数据.通过实际故障数据验证,此方法较已有的诊断方法准确性更高,在同等计算精度下速度更快,进而提高了变压器故障诊断的效率. 相似文献
12.
分析变压器油中溶解气体含量进行变压器故障诊断的关键是找到油中溶解气体含量和故障之间的非线性关系。针对已有检测方法诊断准确性不高的问题,提出不基于Fourier变换,而是利用细分的方法构造一类新的具有加权性质的小波函数。将小波函数作为前馈神经网络的隐含层函数并优化网络的学习率,构造出加权小波神经网络处理变压器油中溶解气体含量数据。通过实际故障数据验证,此方法较已有的诊断方法准确性更高,在同等计算精度下速度更快,进而提高了变压器故障诊断的效率。 相似文献
13.
14.
多神经网络方法在变压器油色谱故障诊断中的应用 总被引:2,自引:1,他引:2
电力变压器的故障诊断对于变压器的维护起着至关重要的作用,诊断的可信度能给变压器维护提供更好的依据。为了克服单个神经网络不能给出诊断结果可信度的缺点,将多神经网络方法引入到变压器油色谱故障诊断中,利用多个神经网络对变压器诊断结果的方差给出了诊断结果的可信度;同时将多个网络输出的平均作为网络的诊断结果,减少了网络诊断的误差,提高了诊断的准确率。故障变压器实例验证了多神经网络方法的有效性。 相似文献
15.
16.
基于局部特征量的神经网络方法在变压器故障诊断中的应用 总被引:3,自引:1,他引:3
本基于局部特征量的神经网络方法对变压器的故障诊断进行了新的探索,建立了相应的故障诊断的神经网络压缩模型,实例诊断结果证明了这种方法的有效性。本方法能够诊断传统的三比值法无法诊断的故障,对于其它的故障诊断也有一定的参考意义。 相似文献
17.
18.
19.