首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
改善电能质量的前提和关键是准确迅速地对电能质量各扰动进行检测和分类。提出了一种电能质量检测与分类的新方法。电能质量事件经过采样后采用离散小波变换(DWT)进行去噪,获得高信噪比的信号,然后将信号进行分解并提取出8个最优特征向量。选取sym4小波作为母小波,采用基于小波神经网络的方法对电能质量扰动信号进行辨识,从而实现对电能质量扰动的检测与分类。最后,仿真结果验证了所提出方法的有效性与高准确度。  相似文献   

2.
基于S变换和分类树的电网暂态电能质量扰动分类辨识   总被引:1,自引:0,他引:1  
针对暂态电能质量的检测分析,分别在强弱两种噪声背景下运用S变换的不同方法对暂态多扰动信号进行定位检测.对于暂态多扰动的分类辨识,运用了基于S变换和分类树相结合的暂态电能质量多扰动分类辨识方法,首先运用S变换对暂态多扰动信号进行时频分析,然后提取扰动信号的特征量,最后生成用于对暂态多扰动信号进行分类的决策树分类辨识方法,以此来实现对暂态多扰动信号的分类辨识.仿真计算结果表明,该方法对暂态多扰动信号能够进行有效的分类辨识,准确度高且抗噪能力强.  相似文献   

3.
基于传统广义S变换的电能质量扰动分析方法计算量大,不利于信号的实时检测与分类,且存在信噪比不高时检测精度仍较低和分类正确率不高的问题。该文对传统广义S变换算法进行改进并应用于电能质量扰动分析。首先,利用快速傅里叶变换估计信号频率,缩小频域分析范围,大幅度节省计算时间;其次,用双高斯窗替代传统高斯窗,解决传统广义S变换检测扰动起止时间的幅值曲线变化缓慢的问题,并通过自适应选择双高斯窗参数,信号变换后得到的模时频矩阵信息更加可靠。最后,借助Matlab R2010b仿真平台引入新的电能质量扰动指标准确估计扰动起止时间信息和依据提取有效特征信息直接分类或借助简单的判别树识别特定扰动,提高了分类效率和正确率。通过对12种电能质量扰动信号的分析结果,验证了文中方法的有效性。  相似文献   

4.
提出采用S变换方法对信号进行时频分析,结合时域分析得到扰动信号的相关特征量,然后使用支持向量机对8种电能质量扰动信号进行分类。仿真分析表明,该方法能够对几种常见的电能质量扰动事件进行准确分类,正确率高,并且在强噪声干扰下,仍可保持较高的分辨率,适用于电能质量扰动的自动辨识。  相似文献   

5.
针对暂态电能质量的检测分析,分别在强弱两种噪声背景下运用S变换的不同方法对暂态多扰动信号进行定位检测.对于暂态多扰动的分类辨识,运用了基于S变换和分类树相结合的暂态电能质量多扰动分类辨识方法,首先运用S变换对暂态多扰动信号进行时频分析,然后提取扰动信号的特征量,最后生成用于对暂态多扰动信号进行分类的决策树分类辨识方法,...  相似文献   

6.
针对复杂电网环境下电能质量扰动特征冗余、分类精度低的问题,经过多层卷积神经网络逐层获取电能质量扰动信号低维到高维特征信息,引入特征注意力机制构建多特征融合层消除特征冗余,提升扰动信号关键特征关注度,并加强扰动信号的局部特征与全局特征的提取,提高模型泛化能力进而提高扰动分类精度,据此提出基于多特征融合注意力网络的电能质量扰动识别方法。仿真结果显示,所提方法不仅在单一扰动、复合扰动下能有效辨识电能质量扰动,而且能有效克服噪声干扰对模型的影响,相比主流扰动分类方法提取的特征辨识度更高、模型抗噪性更强。  相似文献   

7.
为了准确辨识电能质量扰动的类型,以实现电能质量问题的有效治理,提出一种基于改进希尔伯特-黄变换(Hilbert-Huang transform,HHT)和决策树的电能质量扰动辨识方法。该方法先采用改进的基于斜率的方法(improved slope based method,ISBM)抑制希尔伯特-黄变换算法的端点效应,然后利用改进的HHT方法进行电能质量扰动信号的分析;从得到的瞬时频率曲线中提取频率成分、扰动持续时间和扰动持续期间频率3个特征量,并从瞬时幅值曲线中获取扰动期间电压幅值;最后构建分类决策树,将这4个特征量作为判断依据,实现扰动信号的分类和识别。根据各类电能质量扰动信号的数学模型,产生大量的测试样本进行仿真测试,结果证明了该方法的有效性和准确性,并且与现有的2种扰动辨识方法进行对比,结果表明该方法具有更高的识别准确率,能准确辨识出电能质量扰动的类型。  相似文献   

8.
基于S变换和最小二乘支持向量机的电能质量扰动识别   总被引:2,自引:0,他引:2  
采用S变换和最小二乘支持向量机相结合,构建了一种电能质量扰动识别的新方法.首先利用S变换对电能质量扰动信号进行时频分解;然后,从扰动信号S变换的结果中,提取扰动信号的特征向量,组成训练样本和测试样本;最后,使用最小输出编码的最小二乘支持向量机对扰动信号进行训练,实现电能质量扰动信号自动分类和识别.仿真结果表明,该方法识别准确率高,抗噪能力强,且训练时间很短,适用于电能质量扰动辨识系统.  相似文献   

9.
针对传统字典学习方法的训练样本信号单一、重构效果差等缺点,提出一种带标签信息子字典级联的学习方法,对电能质量扰动信号进行扰动识别。该方法首先对不同类别电能质量扰动测试和训练样本采用主成分分析方法进行降维特征提取,对训练样本添加标签信息,其次对不同类别的电能质量样本训练成冗余子字典并级联成结构化字典,最后将级联的字典优化学习并由冗余误差最小值来判断目标的归属类别。仿真实验结果表明,该方法下的识别效果优于支持向量机(SVM)和稀疏表达分类(SRC),抗噪声鲁棒性更强,在信噪比20 dB以上的环境中电能质量复合扰动识别率达到91.40%以上。  相似文献   

10.
由于可再生能源接入微电网会给其带来很多电能质量问题,因而对微电网的电能质量信号进行检测及辨识十分必要。但在对电能质量信号进行采集与检测的过程中极易受到噪声的干扰,有效地降低信号中的噪声且完整地保留下反映信号突变特征的奇异点是检测其电能质量扰动的基础。而传统检测方法基本只适用于稳态电能质量扰动且抗噪性较低。为提高在噪声条件下检测的准确性,本文提出了一种基于小波变换和希尔伯特-黄变换的微电网暂态电能质量扰动检测及辨识的方法。该方法使用小波阈值去噪方法消除信号噪声,并利用小波变换和希尔伯特-黄变换对微电网暂态电能质量扰动进行辨识及检测,同时进行了计算机仿真验证,仿真结果表明:该方法去噪效果明显、辨识效果显著、检测精度高、实用性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号