共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前的图卷积神经网络中,没有关注节点的重要程度和有效利用每一层卷积层所提取信息的问题,本文提出了一种用于图分类任务的改进图同构网络模型.首先,为了区分节点的重要程度,本文通过用度矩阵加权卷积算子的方式,使邻居节点数目多的节点获得了更大的权重,使得网络在学习时优先考虑这些节点特征信息.其次,为了区分每一层卷积层重要程度不同,本文计算了每一层节点特征的相似度,根据相似度来为每层节点的特征加权.在实验部分,本文将提出的方法与6个主流的神经网络方法在4个数据集上作比较.实验结果表明,本文提出的多层特征动态加权图卷积网络在图分类问题上比主流的模型性能更好. 相似文献
2.
摔倒事件严重影响老年人的生命健康,对摔倒行为进行检测可以降低老年人再次跌倒的风险,从而保证其生活能力以及提高生活质量。目前基于视觉的摔倒检测方法在实验数据集上能够取得较好的精度,但是无法很好地泛化到现实环境中,在实际应用时往往并不符合动作判断逻辑。针对该问题,对比光流法以及基于人体姿态估计的方法,在2D人体姿态估计的基础上提出一种鲁棒的摔倒检测方法。设计一种摔倒检测优化框架,构建融合多特征与语义图卷积的检测模型,采用更贴合动作判断逻辑的训练策略对该模型进行训练,以提高摔倒检测系统在现实环境中的泛化性。在Le2i Fall Detection Dataset、UP Fall Detection Dataset和Multiple Cameras Fall Detection Dataset这3个公开数据集以及自收集数据集上进行实验,结果表明,该模型的总体检测准确率达到98.3%,基于所提优化框架与训练策略的模型配合YOLOv3和Alpha_pose实现的整体摔倒检测方法在GTX1060显卡中帧率达到约25FPS,在现实场景测试中体现出较好的鲁棒性,相较以往的基于视觉的检测方法更适合部署在实... 相似文献
3.
对于网络中拥有的复杂信息,需要更多的方式抽取其中的有用信息,但现有的单特征图神经网络(GNN)无法完整地刻画网络中的相关特性。针对该问题,提出基于混合特征的图卷积网络(HDGCN)方法。首先,通过图卷积网络(GCN)得到节点的结构特征向量和语义特征向量;然后,通过改进基于注意力机制或门控机制的聚合函数选择性地聚合语义网络节点的特征,增强节点的特征表达能力;最后,通过一种基于双通道图卷积网络的融合机制得到节点的混合特征向量,将节点的结构特征和语义特征联合建模,使特征之间互相补充,提升该方法在后续各种机器学习任务上的表现。在CiteSeer、DBLP和SDBLP三个数据集上进行实验的结果表明,与基于结构特征训练的GCN相比,HDGCN在训练集比例为20%、40%、60%、80%时的Micro?F1值平均分别提升了2.43、2.14、1.86和2.13个百分点,Macro?F1值平均分别提升了1.38、0.33、1.06和0.86个百分点。用拼接或平均值作为融合策略时,准确率相差不超过0.5个百分点,可见拼接和平均值均可作为融合策略。HDGCN在节点分类和聚类任务上的准确率高于单纯使用结构或语义网络训练的模型,并且在输出维度为64、学习率为0.001、2层图卷积层和128维注意力向量时的效果最好。 相似文献
4.
近年来,图神经网络逐渐成为深度学习领域广泛讨论的话题和研究的重点,但大多数研究都是基于图节点,在存在多维属性的前提下进行分类和回归预测,对单时序特征的图节点预测并不能产生理想的效果.本文提出一种时序图卷积网络算法,可以在复杂图网络中,只根据节点单一特征的时序序列,实现对该特征的预测.算法通过在传统图卷积网络中对邻接矩阵... 相似文献
5.
交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convolutional network,MST-GCN)模型。首先,利用切比雪夫图卷积(ChebNet)结合门控循环单元(GRU)构建时空组件以深度挖掘节点的时空相关性;其次,分别提取周相关、日相关、邻近时间的序列数据,输入三个时空组件以深度挖掘不同时间窗口间的时间相关性;最后,将时空组件与编码器—解码器网络结构(encoder-decoder)融合组建MST-GCN模型。利用加利福尼亚州交通局(Caltrans)性能评估系统中高速公路数据集PEMS04和PEMS08进行实验,结果表明新模型的性能明显优于门控循环单元模型和最近提出的扩散卷积循环神经网络(DCRNN)、时间图卷积网络(T-GCN)、基于注意力机制的时空图卷积神经网络(ASTGCN)和时空同步图卷积网络(STSGCN)模型。 相似文献
6.
喻皓 《自动化与仪器仪表》2024,(3):72-76
随着移动互联网的快速发展,网络故障诊断技术已成为一个重要的研究方向。在移动网络故障诊断中,由于故障样本数量有限,传统方法难以准确诊断出故障类型。因此,研究提出了一种融合朴素贝叶斯模型(Naive Bayesian Model, NBM)和图卷积神经网络(Graph Convolutional Networks, GCN)的移动网络故障诊断方法。通过GCN与NBM的融合,故障诊断方法能够提取到更多故障数据,用于对故障的识别和诊断。结果表明,模型方法的故障诊断准确率平均值和故障误检平均值分别为92.18%、9.13%;同时模型方法在网络故障分类识别效率为75.00%,且在故障识别开始时的平均时间开销为11 s。所有结果均优于对比算法,这说明所提出的方法能够有效地识别出移动网络故障类型,并具有较高的准确率和鲁棒性。 相似文献
7.
深度学习方法被广泛应用于轴承故障诊断,但在实际工程应用中,轴承服役期间的真实服役故障数据不易收集,缺乏数据标签,难以进行充分的训练。针对轴承服役故障诊断困难的问题,提出了一种基于图卷积网络(GCN)的迁移学习轴承服役故障诊断模型。该模型从数据充足的人工模拟损伤故障数据中学习故障知识,并迁移到真实的服役故障上,以提高服役故障的诊断准确率。具体来说,通过将人工模拟损伤故障数据和服役故障数据的原始振动信号由小波变换转换为同时具有时间和频率信息的时频图,并将得到的时频图输入到图卷积层中进行学习,从而有效地提取源域和目标域的故障特征表示;然后计算源域和目标域的数据分布之间的Wasserstein距离来度量两个数据分布之间的差异,通过最小化数据分布差异,构建了一个能诊断轴承服役故障的故障诊断模型。在不同的轴承故障数据集和不同工作条件下设计了多种不同的任务进行实验,实验结果表明,该模型具有诊断轴承服役故障的能力,同时也能从一个工作条件迁移到另一工作条件,在不同组件类型和不同工作条件之间进行故障诊断。 相似文献
8.
5G技术的引入进一步增加了网络的复杂性,因此,运营商需要制定新策略来确保网络质量,以保持其竞争力。然而,随着网络规模的扩大,蜂窝网络的运维工作变得更加困难。传统的网络故障诊断方法过于依赖人力和专业知识,导致诊断效率低下且结果不尽如人意。因此,迫切需要采用智能高效的网络故障诊断方法来解决这些挑战。文章提出基于图卷积神经网络的蜂窝网络故障诊断方法,希望能够对5G网络故障诊断研究有所助益。 相似文献
9.
在信息时代,数据量呈指数式增长,而不同数据源存在难以统一表示的异构问题,给数据共享、重用造成不便。语义网络的迅速发展,使本体映射成为解决该问题的有效手段,其核心是本体相似度计算,提出了一种基于图卷积网络的计算方法。将本体建模为异构图网络,再使用图卷积网络学习文本嵌入规则,得到全局统一表示,完成多源数据的融合。实验结果表明,所提方法计算准确性高于其他传统方法,有效地提高了多源数据融合的准确度。 相似文献
10.
多标签学习广泛应用于文本分类、标签推荐、主题标注等.最近,基于深度学习技术的多标签学习受到广泛关注,针对如何在多标签学习中有效挖掘并利用高阶标签关系的问题,提出一种基于图卷积网络探究标签高阶关系的模型TMLLGCN.该模型采用GCN的映射函数从数据驱动的标签表示中生成对象分类器挖掘标签高阶关系.首先,采用深度学习方法提... 相似文献
11.
利用一阶谱图卷积探索类别标签间关系是目前多标签图像识别常用的手段,但是,较多的图卷积层数易出现过度平滑现象,使得该方法存在局限性.为此,提出一种基于自适应多尺度图卷积网络的多标签图像识别方法,主要思路为:采用块Krylov子空间形式的谱图卷积来挖掘类别标签间的相关性,在每个图卷积层中拼接多尺度信息并扩展到深层结构,并在自适应标签关系图模块所构建的关系图上学习分类器,从而更加有效地进行多标签图像识别.通过两个公开数据集PASCAL VOC 2007和MS-COCO 2014上的实验结果验证了所提出方法的有效性. 相似文献
12.
13.
图表示学习已成为图深度学习领域的一个研究热点. 大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高. 为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN. 该方法首先通过图同构网络(graph isomorphism network,GIN)对图进行节点特征编码,并使用图核方法对图进行结构编码,进一步利用Nyström方法降低图核矩阵的维度. 其次借助MLP将图核矩阵与图特征矩阵对齐,通过注意力机制将图的特征编码和结构编码进行自适应加权融合,进而得到图的最终特征表示,提升了图结构特征信息的表达能力. 最后在7个公开的图分类数据集上对模型进行了实验评估:与现有图表示模型相比,KerGIN模型能够在图分类准确度上有较大幅度提升,它可以增强GIN对图结构特征信息的表达能力.
相似文献14.
针对现有基于图卷积网络的推荐模型存在消息传播链路不完善、最终节点表示冗余的问题,提出了一种基于残差网络的轻量级图卷积推荐方法(ResLightGCN)。引入残差结构建立同一节点相邻层之间的消息传播网络,扩充了信息传播路径;从语义角度上优化最终节点的表示,即不考虑没有消息传播的图卷积层;在四个公开数据集上对ResLightGCN进行评价,实验结果表明 提出的模型优于现有的几种基线模型,特别是在Yelp和Amazon_Books数据集上,ResLightGCN模型的NDCG@10评价指标比最佳基线模型分别提升了16.2%和15.8%。 相似文献
15.
图神经网络能够有效学习网络语义信息,在节点分类任务上取得了良好的效果.但仍面临挑战:如何充分利用异质网络丰富语义信息和全面结构信息使节点分类更精准.针对上述问题,提出了一种基于图卷积的异质网络节点分类框架(heterogeneous network node classification framework, HNNCF),包括异质网络约简和图卷积节点分类,解决异质网络节点分类问题.通过设计转换规则约简异质网络,将异质网络化简为语义化同质网络,利用节点间的关系表示保留异质网络多语义信息,降低网络结构建模复杂度;基于消息传递框架设计图卷积节点分类方法,在语义化同质网络上学习无1-sum约束的邻居权重等网络结构信息,深入挖掘关系语义特征,发现不同连接关系和邻居语义提取的差异性,生成节点的异质语义表示用于节点分类,识别节点类别标签.在3个公开的节点分类数据集上进行了实验,结果表明HNNCF能够充分利用异质网络多种语义信息,有效学习邻居节点权重等网络结构信息,提升节点分类效果. 相似文献
16.
代码搜索是当下自然语言处理和软件工程交叉领域的一个重要分支.开发高效的代码搜索算法能够显著提高代码重用的能力,从而有效提高软件开发人员的工作效率.代码搜索任务是以描述代码片段功能的自然语言作为输入,在海量代码库中搜索得到相关代码片段的过程.基于序列模型的代码搜索方法 DeepCS虽然取得了很好的效果,但这种方法不能捕捉代码的深层语义.基于图嵌入的代码搜索方法 GraphSearchNet能缓解这个问题,但没有对代码与文本进行细粒度匹配,也忽视了代码图和文本图的全局关系.为了解决以上局限性,提出基于关系图卷积网络的代码搜索方法,对构建的文本图和代码图编码,从节点层面对文本查询和代码片段进行细粒度匹配,并应用神经张量网络捕捉它们的全局关系.在两个公开数据集上的实验结果表明,所提方法比先进的基线模型DeepCS和GraphSearchNet搜索精度更高. 相似文献
17.
由于遥感图像包含物体类别多样,单个语义类别标签无法全面地描述图像内容,而多标签图像分类任务更加具有挑战性.通过探索深度图卷积网络(GCN),解决了多标签遥感图像分类缺乏对标签语义信息相关性利用的问题,提出了一种新的基于图卷积的多标签遥感图像分类网络,它包含图像特征学习模块、基于图卷积网络的分类器学习模块和图像特征差异化模块三个部分.在公开多标签遥感数据集Planet和UCM上与相关模型进行对比,在多标签遥感图像分类任务上可以得到了较好的分类结果.该方法使用图卷积等模块将多标签图像分类方法应用到遥感领域,提高了模型分类能力,缩短了模型训练时间. 相似文献
18.
孟博 《数字社区&智能家居》2024,(25):33-35
随着5G网络的大规模商用,移动网络愈发复杂,这使得传统的移动网络故障诊断方法越来越难以满足5G网络的需求。将神经网络应用于5G网络故障诊断,可以提高诊断效率和准确性。文章提出一种基于图卷积神经网络的5G网络故障诊断方法,并引入预诊断环节,结合先验知识和人工智能的优势,提高诊断的智能化水平。 相似文献
19.
由于短文本长度较短,在分类时会面临数据稀疏和语义模糊等问题.提出新型图卷积网络BTM_GCN,该网络利用双项主题模型(Biterm Topic Model,BTM)在短文本数据集上训练出固定数量的文档级潜在主题,并作为一种节点嵌入到文本异构图中,再与异构图中的文档节点进行连接,最后利用图卷积网络来捕获文档、词与主题节点... 相似文献
20.
在谣言检测的问题上,现有的研究方法无法有效地表达谣言在社交网络传播的异构图结构特征,并且没有引入外部知识作为内容核实的手段。因此,提出了引入知识表示的图卷积网络谣言检测方法,其中知识图谱作为额外先验知识来帮助核实内容真实性。采用预训练好的词嵌入模型和知识图谱嵌入模型获取文本表示后,融合图卷积网络的同时,能够在谣言传播的拓扑图中更好地进行特征提取以提升谣言检测的精确率。实验结果表明,该模型能够更好地对社交网络中的谣言进行检测。与基准模型的对比中,在Weibo数据集上的精确率达到96.1%,在Twitter15和Twitter16数据集上的F1值分别提升了3.1%和3.3%。消融实验也表明了该方法对谣言检测皆有明显提升效果,同时验证了模型的有效性和先进性。 相似文献