首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对铂电阻温度传感器应用中存在的非线性问题,提出了应用径向基函数神经网络(RBFNN)强非线性逼近能力进行铂电阻温度传感器非线性补偿的方法。介绍了非线性补偿的原理和网络训练方法。结果表明:这种非线性补偿模型具有误差小、精度高、可在线标定和鲁棒性强等优点,与基于BP神经网络的非线性补偿模型相比,大大缩短了网络训练时间,从而方便了铂电阻温度传感器在测控系统中的应用。  相似文献   

2.
基于RBFNN的称重传感器温度误差补偿   总被引:1,自引:0,他引:1  
称重传感器存在因环境温度不同导致的非线性误差,需要进行补偿.阐述了称重传感器的温度误差机理,提出了一种基于径向基函数神经网络(RBFNN)的称重传感器温度误差补偿方法,并给出了训练算法.采用该方法,利用量程为100kg的称重传感器,在0~60℃范围内进行温度误差补偿实验.实验表明:采用这种方法补偿后,称重传感器温度误差...  相似文献   

3.
额定量程内称重传感器的非线性误差不同,为此阐述了称重传感器的非线性误差特性,提出了一种非线性误差自适应分段补偿方法:在额定量程的上限区,采用基于径向基函数神经网络(RBFNN)的补偿网络完成传感器非线性误差补偿;在下限区,采用数字滤波器完成非线性误差补偿;在中间区,传感器不补偿。同时利用自适应选择网络,完成了分段补偿的选择。实验表明,采用这种方法补偿后的称重传感器下限区、中间区与上限区的最大相对误差分别由补偿前的0.2、0.4、1.37下降到0.16、0.04、0.07,补偿效果明显。  相似文献   

4.
为推动胃肠道动力功能障碍型疾病临床诊查技术的发展,研制了胃肠道多元生理参数无创检测系统,针对该系统中压力传感器的非线性误差补偿问题进行研究。介绍了系统所采用的扩散硅压阻式绝对压力传感器的原理,分析了这类传感器的非线性误差产生原因。在传统的减法聚类算法的基础上,提出基于改进的减法—密度聚类算法的RBF网络的传感器非线性误差补偿方法,对样本数据进行聚类操作,用来确定RBF神经网络的初始聚类中心,并结合梯度下降法对网络参数和权值进行训练。结合实际系统的实验数据进行了方法验证和效果分析。实验结果表明:方法在系统误差纠正方面比传统方法提高至-1~4 kPa,使得测量结果准确性得以较大的提高,满足了系统的应用需求。  相似文献   

5.
为了提高传感器的误差补偿精度,提出了一种基于正交基神经网络算法的传感器误差补偿方法.研究了神经网络算法的收敛性,为学习率的选择提供了理论依据.为了验证算法的有效性,给出了传感器误差补偿实例.研究结果表明,基于正交基神经网络算法的传感器误差补偿方法具有高的误差补偿精度,因而是一种有效的误差补偿方法.  相似文献   

6.
数字温度传感器在热电偶冷端补偿中的应用   总被引:3,自引:2,他引:3  
介绍了热电偶冷端补偿的原理和方法以及DS18B20数字式温度传感器的工作原理和特点,提出了用DS18B20实现热电偶冷端补偿的方法,解决了传统热电偶冷端温度补偿的型号匹配,提高了测量准确度,简化了补偿电路。  相似文献   

7.
基于RBF神经网络的传感器非线性误差校正方法   总被引:4,自引:2,他引:4  
介绍了利用人工神经网络进行传感器非线性误差校正的原理。提出了传感器非线性误差校正的径向基函数(RBF)神经网络方法,并与采用BP神经网络校正非线性误差进行了比较。最后给出了一个仿真实验,实验结果表明:采用RBF神经网络可以明显提高网络收敛速度,大大减小传感器非线性误差,校正效果优于BP神经网络。  相似文献   

8.
提高地磁导航精度的关键在于地磁罗盘的误差补偿,本文通过分析数字罗盘误差产生的原因,提出一种基于遗传算法的误差补偿方法,通过遗传算法的交叉、变异、选择等过程,对罗盘误差补偿参数进行优化,算法克服了传统方法的局部最优问题,达到一种全局最优化.实验结果表明:该算法可以有效修正环境磁场误差,将平均误差由补偿前的10.81°降低到0.53°,补偿后的罗盘可以为地磁导航提供更为精确的航向信息.  相似文献   

9.
基于RBF 神经网络的传感器静态误差综合校正方法   总被引:10,自引:3,他引:7  
以一受环境温度和电源波动影响的压力传感器为例,说明了具体实现方法和校正效果.并与采用BP神经网络进行误差校正的方法进行了比较.实验结果表明,采用RBF神经网络可以明显提高网络收敛速度,大大减小传感器静态误差,校正效果优于BP神经网络.  相似文献   

10.
以RBF网络为识别模型,采用竞争算法,提出了一种基于RBF网络的数字识别方法,仿真结果表明此方法具有识别率高,识别速度快的优点,具有广阔的应用前景  相似文献   

11.
基于RBF 神经网络提高压力传感器精度的新方法􀀂   总被引:11,自引:3,他引:8  
传感器的温度漂移普遍存在,提出了一种新的补偿方法.用智能温度传感器DS18B20作为辅助传感器,结合主传感器测量变量,利用径向基函数(RBF)神经网络构建双输入单输出网络模型,采用带遗忘因子的梯度下降算法实现了压力传感器高精度温度补偿,比普通补偿方法精度提高了2~5倍.  相似文献   

12.
电容式压力传感器温度补偿的RBF神经网络   总被引:2,自引:0,他引:2  
提出了一种基于径向基函数 (RBF)神经网络的电容式压力传感器温度补偿方法。通过实例说明了这一方法的应用 ,结果表明采用这种方法能在不同的压力下及温度变化较大时 ,对电容式压力传感器进行有效的温度补偿 ,并且能得到很高的补偿精度。  相似文献   

13.
一种基于改进遗传RBF神经网络的传感器动态特性补偿算法   总被引:1,自引:0,他引:1  
为了改善传感器的动态特性,减小系统测量误差,分析了传感器动态性能补偿的基本原理,提出了一种基于改进型遗传算法(IAGA)和RBF神经网络相结合的补偿算法,给出了用IAGA-RBF补偿算法建立的数学模型,并应用到瓦斯传感器的补偿环节.实验证明,该补偿算法具有响应速度快、计算精度高和工作频带宽的特点,多项动态特性指标都得到了较大的改善,能够有效地用于传感器的动态特性补偿.  相似文献   

14.
在红外CO2传感器的测量过程中,环境总压是一个重要的影响因素。在环境总压变化的情况下做好压力补偿得出正确的CO2气体分压值,对提高传感器的测量精度有重要意义。提出一种基于聚类和梯度法的径向基函数(RBF)神经网络方法,利用它的局部逼近特性,建立起其在红外CO2传感器的非线性压力补偿中的网络模型。实验结果表明:该应用收到了良好的效果。  相似文献   

15.
提出了一种可消除温度对光纤位移传感器影响的双光路传感器结构,用径向基函数(RBF)神经网络对传感器输出进行了处理,并用实测数据对其进行了验证.结果表明:采用双光路结构,并结合RBF神经网络使传感器的热灵敏度漂移降低了近1个数量级.  相似文献   

16.
基于速度的延滞特性即不会瞬间突变,利用径向基函数(RBF)优秀的预估和拟合逼近能力,通过对已知时刻的速度值进行网络训练和学习,可以很好地预测下一刻的值及其变化趋势。根据是否落入由训练误差所确定的置信区间,判定异常值并进行异常值的滤除。经实验测试,95%的置信区间能够完全满足剔除异常数据、保留正常数据的功能。  相似文献   

17.
一种新的径向基概率神经网络模型(Ⅰ):基本理论   总被引:2,自引:0,他引:2  
文中在径向基函数网络(RBFN)和概率神经网络(PNN)的基础上,提出了一种径向基概率神经网络(RBPNN)模型,这种网络保留了前两种网络模型的优点,既可以减少网络连接权值的训练时间,又能减少网络隐单元的数目,同时,网络用于测试的时间也较RBFN明显地下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号