共查询到17条相似文献,搜索用时 62 毫秒
1.
针对铂电阻温度传感器应用中存在的非线性问题,提出了应用径向基函数神经网络(RBFNN)强非线性逼近能力进行铂电阻温度传感器非线性补偿的方法。介绍了非线性补偿的原理和网络训练方法。结果表明:这种非线性补偿模型具有误差小、精度高、可在线标定和鲁棒性强等优点,与基于BP神经网络的非线性补偿模型相比,大大缩短了网络训练时间,从而方便了铂电阻温度传感器在测控系统中的应用。 相似文献
2.
3.
额定量程内称重传感器的非线性误差不同,为此阐述了称重传感器的非线性误差特性,提出了一种非线性误差自适应分段补偿方法:在额定量程的上限区,采用基于径向基函数神经网络(RBFNN)的补偿网络完成传感器非线性误差补偿;在下限区,采用数字滤波器完成非线性误差补偿;在中间区,传感器不补偿。同时利用自适应选择网络,完成了分段补偿的选择。实验表明,采用这种方法补偿后的称重传感器下限区、中间区与上限区的最大相对误差分别由补偿前的0.2、0.4、1.37下降到0.16、0.04、0.07,补偿效果明显。 相似文献
4.
为推动胃肠道动力功能障碍型疾病临床诊查技术的发展,研制了胃肠道多元生理参数无创检测系统,针对该系统中压力传感器的非线性误差补偿问题进行研究。介绍了系统所采用的扩散硅压阻式绝对压力传感器的原理,分析了这类传感器的非线性误差产生原因。在传统的减法聚类算法的基础上,提出基于改进的减法—密度聚类算法的RBF网络的传感器非线性误差补偿方法,对样本数据进行聚类操作,用来确定RBF神经网络的初始聚类中心,并结合梯度下降法对网络参数和权值进行训练。结合实际系统的实验数据进行了方法验证和效果分析。实验结果表明:方法在系统误差纠正方面比传统方法提高至-1~4 kPa,使得测量结果准确性得以较大的提高,满足了系统的应用需求。 相似文献
5.
6.
7.
8.
9.
10.
以RBF网络为识别模型,采用竞争算法,提出了一种基于RBF网络的数字识别方法,仿真结果表明此方法具有识别率高,识别速度快的优点,具有广阔的应用前景 相似文献
11.
12.
电容式压力传感器温度补偿的RBF神经网络 总被引:2,自引:0,他引:2
提出了一种基于径向基函数 (RBF)神经网络的电容式压力传感器温度补偿方法。通过实例说明了这一方法的应用 ,结果表明采用这种方法能在不同的压力下及温度变化较大时 ,对电容式压力传感器进行有效的温度补偿 ,并且能得到很高的补偿精度。 相似文献
13.
一种基于改进遗传RBF神经网络的传感器动态特性补偿算法 总被引:1,自引:0,他引:1
为了改善传感器的动态特性,减小系统测量误差,分析了传感器动态性能补偿的基本原理,提出了一种基于改进型遗传算法(IAGA)和RBF神经网络相结合的补偿算法,给出了用IAGA-RBF补偿算法建立的数学模型,并应用到瓦斯传感器的补偿环节.实验证明,该补偿算法具有响应速度快、计算精度高和工作频带宽的特点,多项动态特性指标都得到了较大的改善,能够有效地用于传感器的动态特性补偿. 相似文献
14.
15.
16.
基于速度的延滞特性即不会瞬间突变,利用径向基函数(RBF)优秀的预估和拟合逼近能力,通过对已知时刻的速度值进行网络训练和学习,可以很好地预测下一刻的值及其变化趋势。根据是否落入由训练误差所确定的置信区间,判定异常值并进行异常值的滤除。经实验测试,95%的置信区间能够完全满足剔除异常数据、保留正常数据的功能。 相似文献
17.
一种新的径向基概率神经网络模型(Ⅰ):基本理论 总被引:2,自引:0,他引:2
黄德双 《计算机研究与发展》1998,(2)
文中在径向基函数网络(RBFN)和概率神经网络(PNN)的基础上,提出了一种径向基概率神经网络(RBPNN)模型,这种网络保留了前两种网络模型的优点,既可以减少网络连接权值的训练时间,又能减少网络隐单元的数目,同时,网络用于测试的时间也较RBFN明显地下降. 相似文献