首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 609 毫秒
1.
基于深度学习的跨语言情感分析模型需要借助预训练的双语词嵌入(Bilingual Word Embedding,BWE)词典获得源语言和目标语言的文本向量表示.为了解决BWE词典较难获得的问题,该文提出一种基于词向量情感特征表示的跨语言文本情感分析方法,引入源语言的情感监督信息以获得源语言情感感知的词向量表示,使得词向量...  相似文献   

2.
针对传统跨语言词嵌入方法在汉越等差异较大的低资源语言上对齐效果不佳的问题,提出一种融合词簇对齐约束的汉越跨语言词嵌入方法。通过独立的单语语料训练获取汉越单语词嵌入,使用近义词、同类词和同主题词3种不同类型的关联关系,充分挖掘双语词典中的词簇对齐信息以融入到映射矩阵的训练过程中,使映射矩阵进一步学习到不同语言相近词间具有的一些共性特征及映射关系,根据跨语言映射将两种语言的单语词嵌入映射至同一共享空间中对齐,令具有相同含义的汉语与越南语词嵌入在空间中彼此接近,并利用余弦相似度为空间中每一个未经标注的汉语单词查找对应的越南语翻译构建汉越对齐词对,实现跨语言词嵌入。实验结果表明,与传统有监督及无监督的跨语言词嵌入方法Multi_w2v、Orthogonal、VecMap、Muse相比,该方法能有效提升映射矩阵在非标注词上的泛化性,改善汉越低资源场景下模型对齐效果较差的问题,其在汉越双语词典归纳任务P@1和P@5上的对齐准确率相比最好基线模型提升了2.2个百分点。  相似文献   

3.
针对越南语事件标注语料稀缺且标注语料中未登陆词过多导致实体识别精度降低的问题,提出一种融合词典与对抗迁移的实体识别模型。将越南语作为目标语言,英语和汉语作为源语言,通过源语言的实体标注信息和双语词典提升目标语言的实体识别效果。采用词级别对抗迁移实现源语言与目标语言的语义空间共享,融合双语词典进行多粒度特征嵌入以丰富目标语言词的语义表征,再使用句子级别对抗迁移提取与语言无关的序列特征,最终通过条件随机场推理模块标注实体识别结果。在越南语新闻数据集上的实验结果表明,在源语言为英语和汉语的情况下,该模型相比主流的单语实体识别模型和迁移学习模型的实体识别性能有明显提升,并且在加入目标语义标注数据后,相比单语实体识别模型的F1值分别增加了19.61和18.73个百分点。  相似文献   

4.
随着互联网多语言信息的发展,如何有效地表示不同语言所含的信息已成为自然语言信息处理的一个重要子任务,因而跨语言词向量成为当下研究的热点.跨语言词向量借助迁移学习将单语词向量映射到一个共享的低维空间,在不同语言间进行语法、语义和结构特征的迁移,能够对跨语言语义信息进行建模.B E RT模型通过大量语料的训练,得到一种通用...  相似文献   

5.
杨威亚  余正涛  高盛祥  宋燃 《计算机应用》2021,41(10):2879-2884
针对汉越跨语言新闻话题发现任务中汉越平行语料稀缺,训练高质量的双语词嵌入较为困难,而且新闻文本一般较长导致双语词嵌入的方法难以很好地表征文本的问题,提出一种基于跨语言神经主题模型(CL-NTM)的汉越新闻话题发现方法,利用新闻的主题信息对新闻文本进行表征,将双语语义对齐转化为双语主题对齐任务。首先,针对汉语和越南语分别训练基于变分自编码器的神经主题模型,从而得到单语的主题抽象表征;然后,利用小规模的平行语料将双语主题映射到同一语义空间;最后,使用K-means方法对双语主题表征进行聚类,从而发现新闻事件簇的话题。实验结果表明,所提方法相较于面向中英文的隐狄利克雷分配主题改进模型(ICE-LDA)在Macro-F1值与主题一致性上分别提升了4个百分点与7个百分点,可见所提方法可有效提升新闻话题的聚类效果与话题可解释性。  相似文献   

6.
缅甸语属于低资源语言,网络中获取大规模的汉-缅双语词汇一定程度上可以缓解汉-缅机器翻译中面临句子级对齐语料匮乏的问题.为此,本文提出了一种融合主题及上下文特征的汉缅双语词汇抽取方法.首先利用LDA主题模型获取汉缅文档主题分布,并通过双语词向量表征将跨语言主题向量映射到共享的语义空间后抽取同一主题下相似度较高的词作为汉-缅双语候选词汇,然后基于BERT获取候选双语词汇相关上下文的词汇语义表征构建上下文向量,最后通过计算候选词的上下文向量的相似度对候选双语词汇进行加权得到质量更高的汉缅互译词汇.实验结果表明,相对于基于双语词典的方法和基于双语LDA+CBW的方法,本文提出的方法准确率上分别提升了11.07%和3.82%.  相似文献   

7.
针对现有双语词向量研究方法获取双语词向量需要用到大量双语平行文本,对于柬汉双语而言存在着平行文本不足的关键问题,而英语作为通用语言,英语-汉语以及英语-柬埔寨语双语平行文本较多且容易获得,因此在典型相关分析跨语言词向量模型上作出进一步改进,提出以英语为中间语言的基于多重CCA算法的汉柬双语词向量构建方法。通过将英语、汉语词向量投影至汉-英向量空间,将英语、柬语词向量投影至柬-英向量空间,根据CCA算法分别得到英-汉、英-柬双语词向量;以英语作为中间词并结合部分实验室构建的柬汉双语电子词典将上一步得到的英-柬、英-汉双语词向量投影至第三方同一向量空间中,再次根据CCA算法得到柬语和汉语在新向量空间中的投影转换矩阵;得到柬英汉多语词向量,多语词向量中包含有柬汉双语词向量。与传统方法相比,该方法解决了当前其他模型所面临的初始柬汉平行文本稀缺的问题,且获得较高的柬汉双语词向量。  相似文献   

8.
跨语言摘要是将输入的源语言文本生成目标语言摘要的过程.目前跨语言摘要任务大多是借助于机器翻译,而针对越南语这类低资源语言,机器翻译效果不佳是汉越跨语言摘要面临的挑战.针对该问题,提出了一种基于词对齐的半监督对抗学习汉越跨语言摘要生成方法,其思想是将汉越双语对齐到同一空间,得到对齐的双语特征,然后同时利用双语特征生成跨语...  相似文献   

9.
随着人们对互联网多语言信息需求的日益增长,跨语言词向量已成为一项重要的基础工具,并成功应用到机器翻译、信息检索、文本情感分析等自然语言处理领域。跨语言词向量是单语词向量的一种自然扩展,词的跨语言表示通过将不同的语言映射到一个共享的低维向量空间,在不同语言间进行知识转移,从而在多语言环境下对词义进行准确捕捉。近几年跨语言词向量模型的研究成果比较丰富,研究者们提出了较多生成跨语言词向量的方法。该文通过对现有的跨语言词向量模型研究的文献回顾,综合论述了近年来跨语言词向量模型、方法、技术的发展。按照词向量训练方法的不同,将其分为有监督学习、无监督学习和半监督学习三类方法,并对各类训练方法的原理和代表性研究进行总结以及详细的比较;最后概述了跨语言词向量的评估及应用,并分析了所面临的挑战和未来的发展方向。  相似文献   

10.
缅甸语属于资源稀缺型语言,汉缅双语可比文档是获取平行句对的重要数据资源。该文提出了一种融合主题模型及双语词向量的汉缅双语可比文档获取方法,将跨语言文档相似度计算转化为跨语言主题相似度计算问题。首先,使用单语LDA主题模型分别抽取汉语、缅甸语的主题,得到对应的主题分布表示;其次,将抽取到的汉缅主题词进行表征得到单语的主题词向量,利用汉缅双语词典将汉语、缅甸语单语主题词向量映射到共享的语义空间,得到汉缅双语主题词向量,最后通过计算汉语、缅甸语主题相似度获取汉缅双语可比文档。实验结果表明,该文提出的方法得到的F1值比基于双语词向量方法提升了5.6%。  相似文献   

11.
汉缅双语词典是开展机器翻译、跨语言检索等研究的重要数据资源.当前在种子词典的基础上使用迭代自学习的方法在平行语料中抽取双语词典取得了较好的效果,然而针对低资源语言汉语-缅语的双语词典抽取任务,由于双语平行资源匮乏,基于迭代自学习的方法不能得到有效的双语词向量表示,致使双语词典抽取模型准确度较低.研究表明,可比语料中相似...  相似文献   

12.
双语词典是跨语言信息检索以及机器翻译等自然语言处理应用中的一项重要资源。现有的基于可比语料库的双语词典提取算法不够成熟,抽取效果有待提高,而且大多数研究都集中在特定领域的专业术语抽取。针对此不足,提出了一种基于词向量与可比语料库的双语词典提取算法。首先给出了该算法的基本假设以及相关的研究方法,然后阐述了基于词向量利用词间关系矩阵从可比语料库中提取双语词典的具体步骤,最后将该抽取方法与经典的向量空间模型做对比,通过实验分析了上下文窗口大小、种子词典大小、词频等因素对两种模型抽取效果的影响。实验表明,与基于向量空间模型的方法相比,本算法的抽取效果有着明显的提升,尤其是对于高频词语其准确率提升最为显著。  相似文献   

13.
神经机器翻译在平行语料充足的任务中能取得很好的效果,然而对于资源稀缺型语种的翻译任务则往往效果不佳.汉语和越南语之间没有大规模的平行语料库,在这项翻译任务中,该文探索只使用容易获得的汉语和越南语单语语料,通过挖掘单语语料中词级别的跨语言信息,融合到无监督翻译模型中提升翻译性能;该文提出了融合EMD(Earth Move...  相似文献   

14.
汉越平行语料库的资源稀缺,很大程度上影响了汉越机器翻译效果。数据增强是提升汉越机器翻译的有效途径,基于双语词典的词汇替换数据增强是当前较为流行的方法。由于汉语-越南语属于低资源语言对,双语词典难以获得,而通过单语词向量获取低频词的同义词较为容易。因此,提出一种基于低频词的同义词替换的数据增强方法。该方法利用小规模的平行语料,首先通过对单语词向量的学习,获得一端语言低频词的同义词列表;然后对低频词进行同义词替换,再利用语言模型对替换后的句子进行筛选;最后将筛选后的句子与另一端语言中的句子进行匹配,获得扩展的平行语料。汉越翻译对比实验结果表明,提出的方法取得了很好的效果,扩展后的方法比基准和回译方法在BLEU值上分别提高了1.8和1.1。  相似文献   

15.
Word embedding, has been a great success story for natural language processing in recent years. The main purpose of this approach is providing a vector representation of words based on neural network language modeling. Using a large training corpus, the model most learns from co-occurrences of words, namely Skip-gram model, and capture semantic features of words. Moreover, adding the recently introduced character embedding model to the objective function, the model can also focus on morphological features of words. In this paper, we study the impact of training corpus on the results of word embedding and show how the genre of training data affects the type of information captured by word embedding models. We perform our experiments on the Persian language. In line of our experiments, providing two well-known evaluation datasets for Persian, namely Google semantic/syntactic analogy and Wordsim353, is also part of the contribution of this paper. The experiments include computation of word embedding from various public Persian corpora with different genres and sizes while considering comprehensive lexical and semantic comparison between them. We identify words whose usages differ between these datasets resulted totally different vector representation which ends to significant impact on different domains in which the results vary up to 9% on Google analogy and up to 6% on Wordsim353. The resulted word embedding for each of the individual corpora as well as their combinations will be publicly available for any further research based on word embedding for Persian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号