共查询到19条相似文献,搜索用时 31 毫秒
1.
知识图谱嵌入是一种将实体和关系映射到低维向量空间的技术。目前已有的嵌入表示方法在对具有不对等特征的知识图谱中的实体和关系建模时存在两大缺陷: 一是假定头尾实体来自同一语义空间,忽略二者在链接结构和数量上的不对等;二是每个关系单独配置一个投影矩阵,忽略关系之间的内在联系,导致知识共享困难,泛化能力差。该文提出一种新的嵌入表示方法TransRD,首先对头尾实体采用不对等转换矩阵进行投影,并用ADADELTA算法自适应调整学习率;其次对关系按相关性分组,每组关系使用同一对投影矩阵的方式来共享公共信息,解决泛化能力差的问题。在公开的数据集WN18和FB15K以及MPBC_20(乳腺癌知识图谱的子集)上进行实验和结果分析并与现有的模型进行对比,结果表明TransRD在各项指标上均取得大幅提升。 相似文献
2.
神经网络语言模型应用广泛但可解释性较弱,其可解释性的一个重要而直接的方面表现为词嵌入向量的维度取值和语法语义等语言特征的关联状况。先前的可解释性工作集中于对语料库训得的词向量进行知识注入,以及基于训练和任务的算法性能分析,对词嵌入向量和语言特征之间的关联缺乏直接的验证和探讨。该文应用基于语言知识库的伪语料法,通过控制注入语义特征,并对得到的词嵌入向量进行分析后取得了一些存在性的基础性结论:语义特征可以通过控制注入到词嵌入向量中;注入语义特征的词嵌入向量表现出很强的语义合成性,即上层概念可以由下层概念表示;语义特征的注入在词嵌入向量的所有维度上都有体现。 相似文献
3.
神经网络语言模型应用广泛但可解释性较弱,其可解释性的一个重要而直接的方面表现为词嵌入向量的维度取值和语法语义等语言特征的关联状况。先前的可解释性工作集中于对语料库训得的词向量进行知识注入,以及基于训练和任务的算法性能分析,对词嵌入向量和语言特征之间的关联缺乏直接的验证和探讨。该文应用基于语言知识库的伪语料法,通过控制注入语义特征,并对得到的词嵌入向量进行分析后取得了一些存在性的基础性结论: 语义特征可以通过控制注入到词嵌入向量中;注入语义特征的词嵌入向量表现出很强的语义合成性,即上层概念可以由下层概念表示;语义特征的注入在词嵌入向量的所有维度上都有体现。 相似文献
4.
针对传统跨语言词嵌入方法在汉越等差异较大的低资源语言上对齐效果不佳的问题,提出一种融合词簇对齐约束的汉越跨语言词嵌入方法。通过独立的单语语料训练获取汉越单语词嵌入,使用近义词、同类词和同主题词3种不同类型的关联关系,充分挖掘双语词典中的词簇对齐信息以融入到映射矩阵的训练过程中,使映射矩阵进一步学习到不同语言相近词间具有的一些共性特征及映射关系,根据跨语言映射将两种语言的单语词嵌入映射至同一共享空间中对齐,令具有相同含义的汉语与越南语词嵌入在空间中彼此接近,并利用余弦相似度为空间中每一个未经标注的汉语单词查找对应的越南语翻译构建汉越对齐词对,实现跨语言词嵌入。实验结果表明,与传统有监督及无监督的跨语言词嵌入方法Multi_w2v、Orthogonal、VecMap、Muse相比,该方法能有效提升映射矩阵在非标注词上的泛化性,改善汉越低资源场景下模型对齐效果较差的问题,其在汉越双语词典归纳任务P@1和P@5上的对齐准确率相比最好基线模型提升了2.2个百分点。 相似文献
5.
研究基于矩阵分解的词嵌入方法,提出统一的描述模型,并应用于中英跨语言词嵌入问题。以双语对齐语料为知识源,提出跨语言关联词计算方法和两种点关联测度的计算方法: 跨语言共现计数和跨语言点互信息。分别设计目标函数学习中英跨语言词嵌入。从目标函数、语料数据、向量维数等角度进行实验,结果表明,在中英跨语言文档分类中以前者作为点关联测度最高得到87.04%的准确率;在中英跨语言词义相似度计算中,后者作为点关联测度得到更好的性能,同时在英—英词义相似度计算中的性能略高于主流的英语词嵌入。 相似文献
6.
针对基于关键词字符匹配和短语级情感分析等传统敏感信息检测方法准确率低和泛化性差的问题,提出了一种基于语言模型词嵌入和注意力机制(A-ELMo)的敏感信息检测方法。首先,进行字典树快速匹配,以最大限度地减少无用字符的比较,从而极大地提高查询效率;其次,构建了一个语言模型词嵌入模型(ELMo)进行语境分析,并通过动态词向量充分表征语境特征,从而实现较高的可扩展性;最后,结合注意力机制加强模型对敏感特征的识别度,从而进一步提升对敏感信息的检测率。在由多个网络数据源构成的真实数据集上进行实验,结果表明,所提敏感信息检测方法与基于短语级情感分析的方法相比,准确率提升了13.3个百分点;与基于关键字匹配的方法相比,准确率提升了43.5个百分点,充分验证了所提方法在加强敏感特征识别度、提高敏感信息检测率方面的优越性。 相似文献
7.
一种基于改进k-means的RBF神经网络学习方法 总被引:1,自引:0,他引:1
针对传统RBF神经网络学习算法构造的网络分类精度不高,传统的k-means算法对初始聚类中心的敏感,聚类结果随不同的初始输入而波动。为了解决以上问题,提出一种基于改进k-means的RBF神经网络学习算法。先用减聚类算法优化k-means算法,消除聚类的敏感性,再用优化后的k-means算法构造RBF神经网络。仿真结果表明了该学习算法的实用性和有效性。 相似文献
8.
词汇的表示问题是自然语言处理的基础研究内容。目前单语词汇分布表示已经在一些自然语言处理问题上取得很好的应用效果,然而在跨语言词汇的分布表示上国内外研究很少,针对这个问题,利用两种语言名词、动词分布的相似性,通过弱监督学习扩展等方式在中文语料中嵌入泰语的互译词、同类词、上义词等,学习出泰语词在汉泰跨语言环境下的分布。实验基于学习到的跨语言词汇分布表示应用于双语文本相似度计算和汉泰混合语料集文本分类,均取得较好效果。 相似文献
9.
10.
《计算机应用与软件》2016,(5)
以过完备字典为基础,信号可以被描述为原子的稀疏线性组合。在以往的字典学习方法中,大都是以单个原子为单位进行字典学习。利用稀疏子空间聚类的方法将字典中具有相同稀疏表达形式的原子归类为一组,形成具有块结构的字典,然后对训练信号稀疏编码,最后结合梯度下降的方法对字典进行更新。实验结果表明,该方法在相同迭代次数下的优化收敛速度较快,而且对信号的重构误差率优于传统方法。另外,所构造一种对称网络结构的字典学习流程框架,不同于一次性用全部训练数据进行训练的方法,该学习流程每处理一组信号,字典进行一次更新,实现了对字典的分步更新。 相似文献
11.
基于X结构的词义选择利用单词所在的X结构,并与词典的用法部分的X结构相比较,通过比较结构及结构中其它词的相似性来决定单词的含义,单词间的相似性利用WordNet来实现.这一方法只要较少的学习例子,可以避免传统的基于单词同现的方法中需要大量的语料库及数据稀少等问题。 相似文献
12.
13.
Adam Kilgarriff 《Computers and the Humanities》1992,26(5-6):365-387
The word senses in a published dictionary are a valuable resource for natural language processing and textual criticism alike. In order that they can be further exploited, their nature must be better understood. Lexicographers have always had to decide where to say a word has one sense, where two. The two studies described here look into their grounds for making distinctions. The first develops a classification scheme to describe the commonly occurring distinction types. The second examines the task of matching the usages of a word from a corpus with the senses a dictionary provides. Finally, a view of the ontological status of dictionary word senses is presented.Adam Kilgarriff has recently completed his doctoral thesis, entitled Polysemy, available as CSRP 261, from the School of Cognitive and Computing Science, University of Sussex. He is now working on the preparation of database versions of dictionaries for language research for Longman Dictionaries. 相似文献
14.
15.
16.
刘欣佘贤栋唐永旺王波 《数据采集与处理》2017,32(5):1052-1060
针对互联网短文本特征稀疏和速度更新快而导致的短文本聚类性能较差的问题,本文提出了一种基于特征词向量的短文本聚类算法。首先,定义基于词性和词长度加权的特征词提取公式并提取特征词代表短文本;然后,使用Skip-gram模型(Continous skip-gram model)在大规模语料中训练得到表示特征词语义的词向量;最后,引入词语游走距离(Word mover′s distance,WMD)来计算短文本间的相似度并将其应用到层次聚类算法中实现短文本聚类。在4个测试数据集上的评测结果表明,本文方法的效果明显优于传统的聚类算法,平均F值较次优结果提高了56.41%。 相似文献
17.
18.
19.
随着社交媒体的迅速发展,信息过载问题越发严重,因此如何从海量、短小而充满噪声的社交媒体数据中发现和挖掘出热点话题或者热点事件成为一个重要的问题。结合社交媒体数据实时性、地理性、包含较多元数据等特点,提出了用户行为分析与文本内容分析相结合的热点挖掘方法。在内容分析过程中,提出了从更细的词语粒度进行聚类,以代替传统的在消息粒度进行聚类的经典方法。为了提高话题关键词提取的效果,引入了基于词向量技术,并通过语义聚类的方法进行热点挖掘。在真实数据集上的实验结果表明,该方法提取的关键词语义关联性强、话题划分效果好,在主要指标上优于传统的热点挖掘方法。 相似文献