首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
赵彤  谭永红 《计算机仿真》2004,21(8):104-107
为了减轻非线性动态系统中未知迟滞(Hysteresis)的不良影响,该文提出了一类Backlash型迟滞模型。将有限数量不同宽度的Backlash(Matlab/Simulink)算子进行叠加,来仿真执行器中的迟滞非线性动态。用此模型,提出了基于径向基函数神经网络的自适应控制方案,以控制伴有未知迟滞的非线性动态系统。该方案采用了动态逆的思想及伪控制的概念。利用Lyapunov稳定理论,设计了两个鲁棒控制项,保证动态系统的稳定性、系统中所有信号有界和误差收敛到起点的领域内。通过Matlab/Simulink仿真实验,证明了所提出方案的有效性。  相似文献   

2.
基于迟滞算子的非平滑三明治系统自适应控制   总被引:1,自引:1,他引:0  
针对一类具有非平滑的迟滞三明治系统, 提出一种基于神经网络的自适应控制方法. 首先利用神经网络做出了前端动态模块的逆系统实现前端动态模块的近似补偿, 这样将迟滞三明治系统转化成一般的迟滞非线性系统. 然后提出一个迟滞算子将迟滞的多映射转化成一一映射, 基于这个迟滞算子设计了神经网络自适应控制器, 通过Lyapunov方法证明了系统的稳定性并推导出神经网络的权值自适应调整律和控制律. 最后通过仿真验证了该方案的有效性.  相似文献   

3.
赵新龙  谭永红  赵彤 《控制与决策》2007,22(10):1134-1138
对具有迟滞非线性的三明治系统,设计了基于Duhem算子的神经网络自适应控制器.首先对前端动态子系统进行近似补偿;然后用Duhem算子描述所提出的迟滞状态,用神经网络逼近迟滞状态与迟滞输出的关系,实现对迟滞非线性的建模.基于该迟滞模型并采用伪控制技术设计神经网络自适应控制器,通过Lyapunov方法证明了系统的稳定性,并推导出神经网络的权值自适应调整律和控制律.最后通过仿真验证了该方案的有效性.  相似文献   

4.
针对智能材料执行器中非平滑、多映射的迟滞非线性,采用Bouc-Wen模型描述迟滞,并提出了一种基于误差变换的反步控制器设计方案.首先利用Bouc-Wen模型中的变量特性,通过预设性能函数,将误差约束在预设范围内.然后通过误差变换,将一个对输出误差存在约束的跟踪问题转化为一个无约束的镇定问题.最后利用反步控制法设计迟滞系统的控制器,该控制方法保证期望的跟踪精度,并能将误差限定在设定范围内且满足预设性能,提高了系统的暂态和稳态性能.仿真结果表明设计方法的有效性.  相似文献   

5.
控制增益为未知函数的不确定系统预设性能反演控制   总被引:2,自引:0,他引:2  
耿宝亮  胡云安  李静  赵永涛 《自动化学报》2014,40(11):2521-2529
对一类控制增益为未知函数的不确定严格反馈系统的预设性能反演控制进行研究.首先,提出一种新的变参数约束方案,放宽了对初始跟踪误差已知的限制,并通过误差转化将不等 式约束的受限系统转化为非受限系统.随后,通过引入积分型Lyapunov函数,避免了因控制增益未知而引起的系统奇异问题.最后,综合应用自适应技术、径向基函数(Radial basis function,RBF)神经网络和反演控制技术完成了控制器的设计,系统中的未知函数利用RBF神经网络直接进行逼近.所设计的控制器能够满足预设性能的要求,且保证闭环系统所有的状态量有界.仿真研究证明了控制器设计方法的有效性.  相似文献   

6.
对一类控制方向未知的不确定严格反馈非线性系统的预设性能自适应神经网络反演控制问题进行了研究.系统中含有时变非匹配不确定项且控制方向未知.首先,提出了一种新的误差转化方法,放宽了对初始误差已知的限制;随后,利用径向基函数(radial basis function,RBF)神经网络及跟踪微分器分别实现了对未知函数和虚拟控制量导数的逼近,并综合运用Nussbaum函数和反演控制技术设计了控制器.所设计的控制器能保证系统内所有信号有界且输出误差满足预设的瞬态和稳态性能要求.最后的仿真研究验证了控制器设计方法的有效性.  相似文献   

7.
针对一类控制增益函数及符号均未知的不确定非线性系统,基于反推滑模设计方法,提出一种鲁棒自适应神经网络控制方案.结合Nussbaum增益设计技术和神经网络逼近能力,取消了控制增益函数及符号已知的条件,应用积分型Lyapunov函数避免了控制器奇异性问题,并通过引入神经网络逼近误差和不确定干扰上界的自适应补偿项消除了建模误差和不确定干扰的影响.理论分析证明了闭环系统所有信号半全局一致终结有界,仿真结果验证了该方法的有效性.  相似文献   

8.
针对一类未知的纯反馈非线性离散系统,提出了基于反步法设计的自适应神经网络控制方法.为避免反步法设计中可能出现的因果矛盾问题,首先将系统进行等价变换,然后利用隐函数定理证实了理想虚拟控制输入和实际控制输入的存在性.利用高阶神经网络估计这些控制量,并基于反步法设计自适应神经网络控制系统,证明了闭环系统半全局一致最终有界.仿真结果验证了所提出方法的有效性.  相似文献   

9.
该文针对不平滑、多映射动态迟滞非线性系统,提出了一种基于神经网络自适应控制方案。在该方案中,通过利用神经网络来逼近模型误差,避免了目前常用逆模型补偿方案中,需求取复杂逆模型的问题。应用Lyapnov稳定定理,证明了整个闭环系统的跟踪误差及神经网络权值将收敛到零点一个有界邻域内。仿真结果表明,所提出的控制方案能够有效补偿迟滞非线性对系统的影响。  相似文献   

10.
该文针对不平滑、多映射动态迟滞非线性系统,提出了一种基于神经网络自适应控制方案.在该方案中,通过利用神经网络来逼近模型误差,避免了目前常用逆模型补偿方案中,需求取复杂逆模型的问题.应用Lyapnov稳定定理,证明了整个闭环系统的跟踪误差及神经网络权值将收敛到零点一个有界邻域内.仿真结果表明,所提出的控制方案能够有效补偿迟滞非线性对系统的影响.  相似文献   

11.
In this paper, an adaptive neural tracking control approach is proposed for a class of nonlinear systems with dynamic uncertainties. The radial basis function neural networks (RBFNNs) are used to estimate the unknown nonlinear uncertainties, and then a novel adaptive neural scheme is developed, via backstepping technique. In the controller design, instead of using RBFNN to approximate each unknown function, we lump all unknown functions into a suitable unknown function that is approximated by only a RBFNN in each step of the backstepping. It is shown that the designed controller can guarantee that all signals in the closed-loop system are semi-globally bounded and the tracking error finally converges to a small domain around the origin. Two examples are given to demonstrate the effectiveness of the proposed control scheme.  相似文献   

12.
In this paper, an adaptive neural output feedback control scheme based on backstepping technique and dynamic surface control (DSC) approach is developed to solve the tracking control problem for a class of nonlinear systems with unmeasurable states. Firstly, a nonlinear state observer is designed to estimate the unmeasurable states. Secondly, in the controller design process, radial basis function neural networks (RBFNNs) are utilised to approximate the unknown nonlinear functions, and then a novel adaptive neural output feedback tracking control scheme is developed via backstepping technique and DSC approach. It is shown that the proposed controller ensures that all signals of the closed-loop system remain bounded and the tracking error converges to a small neighbourhood around the origin. Finally, two numerical examples and one realistic example are given to illustrate the effectiveness of the proposed design approach.  相似文献   

13.
In this paper, the problem of adaptive neural network asymptotical tracking is investigated for a class of nonlinear system with unknown function, external disturbances and input quantisation. Based on neural network technique, an adaptive asymptotical tracking controller is provided for an uncertain nonlinear system via backstepping method. In order to reduce complexity of the control algorithm in the backstepping design process, a sliding mode differentiator is employed to estimate the virtual control law and only two parameters need to be estimated via adaptive control technique. The stability of the closed-loop system is analysed by using Lyapunov function method and zero-tracking error performance is obtained in the presence of unknown nonlinear function, external disturbances and input quantisation. Finally, an application example is employed to demonstrate the effectiveness of the proposed scheme.  相似文献   

14.
针对带有回滞驱动的一类不确定非线性系统,通过把Prandtl-Ishhnskii模型分解为一个离散的Prandtl-Ishlinskii算子和一个小的有界误差项,采用反步递推的设计方法,实现自适应逆控制器的设计.所设计的自适应逆控制器能保证闭环系统全局稳定.仿真结果进一步证明该控制方法的有效性.  相似文献   

15.
This paper focuses on the adaptive control of a class of nonlinear systems with unknown deadzone using neural networks. By constructing a deadzone pre-compensator, a neural adaptive control scheme is developed using backstepping design techniques. Transient performance is guaranteed and semi-globally uniformly ultimately bounded stability is obtained. Another feature of this scheme is that the neural networks reconstruction error bound is assumed to be unknown and can be estimated online. Simulation results are given to demonstrate the effectiveness of the proposed controller.  相似文献   

16.
This paper presents an adaptive neural tracking control scheme for strict-feedback stochastic nonlinear systems with guaranteed transient and steady-state performance under arbitrary switchings. First, by utilising the prescribed performance control, the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed. Second, radial basis function neural networks approximation are used to handle unknown nonlinear functions and stochastic disturbances. At last, by using the common Lyapunov function method and the backstepping technique, a common adaptive neural controller is constructed. The designed controller overcomes the problem of the over-parameterisation, and further alleviates the computational burden. Under the proposed common adaptive controller, all the signals in the closed-loop system are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded, and the prescribed tracking control performance are guaranteed under arbitrary switchings. Three examples are presented to further illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号