首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 922 毫秒
1.
深度学习的成功依赖于海量的训练数据,然而获取大规模有标注的数据并不容易,成本昂贵且耗时;同时由于数据在不同场景下的分布有所不同,利用某一特定场景的数据集所训练出的模型往往在其他场景表现不佳。迁移学习作为一种将知识从一个领域转移到另一个领域的方法,可以解决上述问题。深度迁移学习则是在深度学习框架下实现迁移学习的方法。提出一种基于伪标签的深度迁移学习算法,该算法以ResNet-50为骨干,通过一种兼顾置信度和类别平衡的样本筛选机制为目标域样本提供伪标签,然后进行自训练,最终实现对目标域样本准确分类,在Office-31数据集上的三组迁移学习任务中,平均准确率较传统算法提升5.0%。该算法没有引入任何额外网络参数,且注重源域数据隐私,可移植性强,具有一定的实用价值。  相似文献   

2.
为了实现变电站压板状态的自动巡检,提升变电站运行的可靠性和安全性,提出一种基于迁移学习策略的压板开关状态识别算法。首先利用Inception-V3在ImageNet数据集上进行目标检测训练出的网络参数,得到预训练模型,接着将训练后的瓶颈层特征参数提取至目标网络,作为目标压板开关图片数据集的特征提取器,而后构造基于粒子群优化的支持向量机算法完成压板开关状态的识别。通过与常用深度学习网络在学习效率和学习精度方面的实验结果进行对比,验证本文所提出算法的有效性和优越性,说明迁移学习结合卷积神经网络可以解决电力设备巡检中的小样本问题,提高压板开关状态识别精度和效率。  相似文献   

3.
杜超  刘桂华 《图学学报》2019,40(6):1087
针对于目前二极管玻壳缺陷检测中大多采用人工特征提取,识别准确率不高的问 题,提出一种改进的 VGG 网络的二极管玻壳图像缺陷检测方法。首先对玻壳图像进行预处理, 同时利用原始大样本数据集对卷积神经网络结构 VGG-19 模型进行预训练得到预训练模型,然 后通过迁移学习的方法将预训练模型中的部分卷积、池化等层权重参数迁移到改进网络模型的 固定层中,非固定层用于模型改进,并将网络的全连接层结构重新进行超参数设置和优化,最 后使用预处理后的玻壳图像数据集对改进模型进行训练,得到非固定卷积层和新的全连接层的 参数和权重。在二极管玻壳数据集进行测试,实验结果表明,该方法能有效提高二极管玻壳图 像分类识别准确率,达到了 98.3%。  相似文献   

4.
阿奎拉鹰优化算法(Aquila optimizer, AO)和哈里斯鹰优化算法(Harris hawks optimization, HHO)是近年提出的优化算法。AO算法全局寻优能力强,但收敛精度低,容易陷入局部最优,而HHO算法具有较强的局部开发能力,但存在全局探索能力弱,收敛速度慢的缺陷。针对原始算法存在的局限性,本文将两种算法混合并引入动态反向学习策略,提出一种融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法。首先,在初始化阶段引入动态反向学习策略提升混合算法初始化性能与收敛速度。此外,混合算法分别保留了AO的探索机制与HHO的开发机制,提高算法的寻优能力。仿真实验采用23个基准测试函数和2个工程设计问题测试混合算法优化性能,并对比了几种经典反向学习策略,结果表明引入动态反向学习的混合算法收敛性能更佳,能够有效求解工程设计问题。  相似文献   

5.
标准支持向量机结合封装式特征选择具有冗余特征多、分类准确率低的不足,为此,提出基于改进哈里斯鹰算法的特征选择同步优化策略。为改进特征子集选取能力和支持向量机的分类准确率,利用混沌映射、能量因子非线性调整和小孔成像对立学习对哈里斯鹰算法进行改进,将改进哈里斯鹰算法用于SVM参数调整和特征子集选取同步优化问题。实验结果表明,改进算法能够在降低特征维度的情况下实现更高的分类准确率,实现同步优化效果。  相似文献   

6.
塑料手机外壳出厂合格检测时, 使用传统的人工辨别外观缺陷, 费时费力. 利用深度学习的卷积神经网络模型训练一个分类器, 实现手机外壳外观出现的划痕缺陷自动化检测, 可以极大的提高工作效率. 实验首先建立基本的卷积神经网络模型, 训练模型获得识别基线, 再设计修改逐步提高检测准确率. 为了解决小数据集训练中的模型过拟合和提高检测精度, 综合使用了丢弃层、数据增强技术和批量标准化, 减少参数量, 并应用迁移学习等方法. 实验结果证明, 分类器模型能有效提升准确率, 在小数据集上达到非常好的划痕缺陷识别效果.  相似文献   

7.
为了通过交通监控自动检测驾驶员是否佩戴安全带,提出一种结合目标检测与语义分割的驾驶员安全带检测算法.首先通过设计轻量化目标检测算法完成驾驶员区域快速定位;然后利用经过剪枝加速的语义分割模型对驾驶员区域进行分割,得出安全带连通域;最后通过判断安全带连通域面积检测驾驶员是否佩戴安全带.在驾驶员区域定位和安全带检测2个数据集上进行训练和测试,实验结果表明,驾驶员区域定位算法在精准度为99.96%时速度为73帧/s,安全带检测算法在准确率为94.87%时速度为305帧/s;该算法在兼顾速度的同时具有较好的精准度.  相似文献   

8.
利用深度迁移学习算法,将深度模型迁移至小批量数据中进行使用,解决过拟合和对数据标签依赖性强的问题。首先,将已经训练好的模型应用在相似图像分类任务中,提高模型效率;其次利用微调策略,对深度学习网络全连接层进行调整,丢弃部分神经元以降低过拟合的发生,提高模型准确性;最后使用DogsVSCats数据集进行测试。实验结果表明,深度迁移学习算法在小批量样本数据中具有更高的准确性。  相似文献   

9.
跨镜行人追踪是计算机视觉和视频监控公共安全体系构建等领域的重要课题。伴随大规模数据集的发展和深度学习网络的广泛研究,深度学习在跨镜行人追踪问题中取得了良好效果。然而在应用中,除了监控视频自身的不同摄像头、不同视角引起的不同视觉表象变化外,面向跨镜行人追踪的整体数据集偏小,具有标记的训练数据样本量更小,从而制约了基于深度学习的跨镜行人追踪效果。提出了改进型深度迁移学习的跨镜行人追踪算法,将在大数据集上训练好的成熟模型进行微调并迁移到目标数据集上,结合目标数据进行优化,使其能更好地针对新数据集做特征提取。在模型训练过程中,通过改进三元组损失函数,拉近相同样本之间的距离,加大不同样本之间的距离,同时设定正样本之间的最大距离阈值,从而保证特征空间生成的簇不会太大,利于模型的优化。该算法减少了深度学习训练模型的时间,避免了小数据集上数据量不足等缺点,提高了跨镜行人追踪的准确度。在五个基准数据集上的跨镜行人追踪对比实验显示,改进算法取得了良好效果。  相似文献   

10.
由于传统BP神经网络的训练过程对初始权值及阈值的依赖程度较大,且较优的初始权值及阈值又无法精确获取,采用哈里斯鹰算法对BP神经网络的权值、阈值进行优化.将BP神经网络训练过程中的误差作为适应度函数,并利用鸢尾花数据构建BP神经网络的训练集及测试集.测试结果表明,哈里斯鹰算法能够有效地优化权值及阈值并降低训练误差.BP神...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号