首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对传统带精英策略的多目标进化算法种群收敛分布不够均匀,全局搜索能力不足的缺点,提出一种基于双精英种群的协同进化算法DEPEA(Double Elite Populations Co-evolutionary Algorithm)。该算法借鉴了子区间划分和非支配排序思想,将整个种群划分成两个不同级别的精英种群和一个普通种群;两个精英种群结合协同进化思想分别采用不同的进化策略实现对算法的探究和探查能力的平衡,高级别的精英种群与低级别的精英种群采用协作操作,促进更优秀的个体产生;高级别的精英种群与普通种群采用引导操作,加快普通个体向精英个体逼近。通过对五个标准的测试函数进行实验,并与传统的NSGA-II算法和最新的hybird_MOEA算法结果进行比较与分析,表明该算法不仅具有更好的全局收敛性,且能够更好地保证种群的多样性。  相似文献   

2.
基于模拟退火机制的多微粒群协同进化算法*   总被引:2,自引:0,他引:2  
模拟退火和多微粒群协同进化是两种较好的改进微粒群算法性能的方法,将这两种思想有机地结合起来,提出了一种基于模拟退火机制的多微粒群协同进化算法。通过对三个标准函数优化的实验表明,该算法高效、稳定地提高了全局寻优能力。  相似文献   

3.
基于微粒群算法与模拟退火算法的协同进化方法   总被引:14,自引:1,他引:13       下载免费PDF全文
提出了一种基于模拟退火与微粒群算法的协同进化方法,利用了微粒群算法的易实现性、局部快速收敛性以及模拟退火算法的全局收敛性.通过两种算法的协同搜索,可以有效克服微粒群算法的早熟收敛.仿真结果表明,本文的协同进化方法不仅具有较好的全局收敛性能,而且具有较快的收敛速度.文章从理论上证明了该方法以概率1收敛于全局最优解.  相似文献   

4.
双精英协同进化遗传算法   总被引:10,自引:0,他引:10       下载免费PDF全文
针对传统遗传算法早熟收敛和收敛速度慢的问题,提出一种双精英协同进化遗传算法(double elite coevolutionary genetic algorithm,简称DECGA).该算法借鉴了精英策略和协同进化的思想,选择两个相异的、高适应度的个体(精英个体)作为进化操作的核心,两个精英个体分别按照不同的评价函数来选择个体,组成各自的进化子种群.两个子种群分别采用不同的进化策略,以平衡算法的勘探和搜索能力.理论分析证明,该算法具有全局收敛性.通过对测试函数的实验,其结果表明,该算法能搜索到几乎所有测试函数的最优解,同时能够有效地保持种群的多样性.与已有算法相比,该算法在收敛速度和搜索全局最优解上都有了较大的改进和提高.  相似文献   

5.
针对差分进化算法在处理函数优化时存在的过早收敛和易陷入局部最优的问题,提出了一种基于精英种群策略的协同差分进化算法。在优化过程中,首先对种群进行适应度值评估和排序,提取前N个优秀个体组成精英种群,其余个体随机分为3个等大的子种群,每个子种群采取不同的进化策略,以此来保证种群的多样性;然后每隔一定代数,根据新的适应度值更新精英种群和其余3个子种群,这样可以有效地避免算法陷入局部最优;最后,将所提出的算法与4个先进的差分进化算法在CEC2014的30个标准测试函数上进行对比实验。实验结果表明,所提出的算法能够有效提高收敛速度,具有较高的收敛精度和较好的优化性能。  相似文献   

6.
传统的遗传算法(GA)在解决云资源调度问题时会随着问题规模的增大而出现早熟收敛、搜索效率低下、寻优能力差等现象.为了克服这些缺陷,提出一种基于多精英协同进化的遗传算法(MECGA).该算法通过多精英保留技术将适应度值大的个体选入精英子种群,通过与普通子种群进行协同交叉操作,可引导整个种群向最优解的方向移动;通过定义个体...  相似文献   

7.
M-精英协同进化数值优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
慕彩红  焦李成  刘逸 《软件学报》2009,20(11):2925-2938
为了解决高维无约束数值优化问题,借鉴协同进化和精英策略的思想,提出了M-精英协同进化算法.该算法认为,适应度较高的个体群(称为精英种群)在整个种群进化中起着主导作用.算法将整个种群划分为由M个精英组成的精英种群和由其余个体组成的普通种群这样两个子种群,依次以M个精英为核心(称为核心精英)来选择成员以组建M个团队.若选中的团队成员是其他精英,则该成员与核心精英利用所定义的协作操作来交换信息;若团队成员选自普通种群,则由核心精英对其进行引导操作.其中,协作操作和引导操作由若干不同类型的交叉或变异算子的组合所定义.理论分析证明,算法以概率1收敛于全局最优解.对15个标准测试函数进行的测试显示,该算法能够找到其中几乎所有被测函数的最优解或好的次优解.与3个已有的算法相比,在评价次数相同时,该算法所求解的精度更高.同时,该算法的运行时间较短,甚至略短于同等设置下的标准遗传算法.此外,对参数的实验分析显示,该算法对参数不敏感,易于使用.  相似文献   

8.
9.
周飞  罗杰 《微机发展》2013,(2):93-96
文中主要以提高进化算法求解TSP问题的效率为研究目标,借鉴人类社会进化中具有远缘杂交优势的理论和进化算法中的精英策略,提出一种基于远缘杂交的精英进化算法。该算法在初始阶段将种群分为精英种群和普通种群,对精英种群则不经过交叉直接进入下一代,对普通种群则基于远缘杂交原则进行交叉,并将子代与精英种群一同组成新子代。仿真实验证明算法能增强优秀个体遗传的机会,提高种群基因的多样性,在深度搜索和广度寻优之间取得了平衡。针对TSP实验结果表明,算法具有可靠的全局收敛性及较快的收敛速度。  相似文献   

10.
张斌  张达敏  阿明翰 《计算机应用》2016,36(11):3118-3122
针对果蝇算法(FOA)寻优精度不高且易陷入局部最优的缺陷,提出了一种基于模拟退火思想的果蝇优化算法(SA-FOA)。所提算法对解的接收机制和寻优步长进行了改进:以广义的Gibbs分布产生的概率为接收概率,解的接收满足Metropolis准则;参考非均匀变异的思想,使步长随迭代次数的增加逐渐减小。通过对几种典型测试函数的仿真表明,改进算法具有较强的全局搜索能力,同时寻优精度和收敛速度比果蝇算法也有较大的提高。因此,可以用改进算法对神经网络和服务调度问题的参数进行优化。  相似文献   

11.
基于改进模拟退火算法的移动机器人路径规划   总被引:5,自引:0,他引:5  
提出了一种新型改进模拟退火算法,对移动机器人路径进行了全局优化。该算法不仅继承了经典模拟退火算法能达到全局最优解的优点,而且其收敛速度远远优于经典模拟退火算法。仿真实验研究表明:这种改进模拟退火算法全局寻优能力强,收敛速度快,显著提高了求解移动机器人全局路径规划的效率。  相似文献   

12.
提出一种并行小生境混合遗传退火算法,并对该算法的特点和优化性能作了定性分析,该并行算法调用了MPI并行库,采用Master-Slaver结构,融入小生境淘汰技术.并应用该算法优化典型的多峰值测试函数-Shubert函数,结果表明这种并行后的算法提高原小生境混合遗传退火算法进化速度,增强全局寻优能力.  相似文献   

13.
退火遗传算法的多连接查询应用   总被引:3,自引:0,他引:3  
多连接查询的优化是数据库查询的关键问题之一,遗传算法与模拟退火算法的结合有利于全局最优解的搜索。提出了一种混合算法,并将其应用到多连接优化问题中,改进了获得最优查询计划的性能。  相似文献   

14.
基于模拟退火算法和遗传算法的图像降噪研究   总被引:2,自引:0,他引:2  
文中首先介绍了遗传算法、模拟退火算法以及图像降噪的原理,然后重点论述了基于模拟退火算法和遗传算法的图像降噪方法与试验步骤,最后通过实验仿真论述了这种方法优于简单遗传算法。  相似文献   

15.
一种基于模拟退火和遗传算法的模糊聚类方法   总被引:3,自引:1,他引:3  
首先,对模糊C-均值聚类算法做了简要分析和评论,根据其特点,提出了一种基于模拟退火和遗传算法的聚类分析方法,算法中采用了适合于模糊聚类的树型编码方案。实验表明,该算法可克服系统对数据集及初始聚类中心的敏感性,避免陷入局部极小,在模式识别、数据挖掘等领域有着广泛的应用前景。  相似文献   

16.
针对模拟退火(simulated annealing,SA)算法收敛速度慢,随机采样策略缺乏记忆能力,算法内在的串行性使其具有并行化问题依赖等缺点,提出了基于粒子群优化(particle swarm optimization,PSO)算法的并行模拟退火算法。该算法利用粒子群优化算法中个体的记忆功能引导算法在解空间中开展精细搜索,在反向学习算法基础上设计新的反向转动操作机制增加了算法的多样性,借助PSO的天然并行性克服了SA的并行问题依赖性,并在集群上实现了多Agent协同进化的改进算法。对Toy模型的蛋白质结构预测问题进行了仿真实验,结果表明该算法能有效提高求解问题的质量和效率。  相似文献   

17.
一种求解混合整数非线性规划问题的模拟退火算法   总被引:6,自引:0,他引:6  
通过适当处理离散变量,将求解无约束非凸NLP问题的高效模拟退火全局优化算法推广到求解一般非凸混合整数非线性规划问题。数值计算结果表明,文中模拟退火算法在适用性、解的质量和计算效率等方面优于其它方法,是求解一般非凸MINLP问题的一种有效的全局优化算法。  相似文献   

18.
DNA编码序列设计的混合进化算法优化   总被引:1,自引:0,他引:1  
分析编码序列设计的目标及需要满足的约束条件,建立相应的数学模型,提出该模型的模拟退火遗传优化算法(HSAGA).模拟退火采用串行优化结构,遗传算法采用群体并行搜索,两者结合成为并行算法.模拟退火作为一种自适应变概率的变异操作,可有效增强并补充遗传算法的进化能力.通过具体算法的实现,得出较高质量的DNA编码序列.  相似文献   

19.
隐马尔可夫模型训练算法是一种局部搜索算法,对初值敏感。传统方法采用随机参数训练隐马尔可夫模型时常陷入局部最优,应用于Web挖掘效果不佳。遗传算法具有较强的全局搜索能力,但容易早熟、收敛慢,模拟退火算法具有较强的局部寻优能力,但会随机漫游,全局搜索能力欠缺。综合考虑遗传算法和模拟退火算法的特点,提出混合模拟退火-遗传算法SGA,优化HMM初始参数,弥补Baum-Welch算法对初始参数敏感的缺陷,Web挖掘的实验结果表明五个域提取的REC和PRE都有明显的提高。  相似文献   

20.
粒群算法是一种新型的群体进化计算方法,已经在一些工程领域得到了广泛的应用,本文鉴于该算法存在收敛速度较慢,易陷入局部极值的缺点,提出一种基于差分及模拟退火的混合粒子群算法。通过对三种进化算法各自优势的分析与结合,得到一种改进的粒子群算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号