首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
综合能源系统(Integrated energy system, IES)运行状态分析常以广泛化信息技术应用提供的数据为支撑, 然而传感器故障、网络通信中断等信息异常导致的数据缺失会直接影响数据质量. 在考虑数据缺失的情况下, 本文提出了一种基于关联信息对抗学习的综合能源系统运行状态分析方法. 首先构建深度生成对抗网络(Generative adversarial network, GAN)对数据缺失部分进行可靠性补偿. 在设计生成器结构过程中, 通过引入系统拓扑邻接矩阵对生成器输入数据进行优化排序, 进而在训练过程中采用设计的多属性融合生成器损失函数, 促使生成器进一步得到高精度补偿数据. 接着将判别器提取的不同时刻完整能源数据的特征作为基础, 采用浅层特征分布及深层特征信息差异值融合判断, 从而实现系统运行状态分析. 最后对不同数据缺失补偿及不同类型节点改变情况进行仿真, 验证了本文所提方法的可行性与有效性.  相似文献   

2.
近年来,随着深度学习模型及其衍生模型在故障诊断领域中的成功应用,基于深度学习的故障诊断方法开始成为研究主流.但是当训练数据不均衡时,通过深度学习从不平衡的数据中提取的故障特征是不准确的,训练得到的神经网络模型的分类结果往往倾向多数类,极大影响了分类效果.针对这种情况,本文结合卷积神经网络设计了一种新的生成对抗网络模型(Convolutional Wasserstein Generative Adversarial Network,CWGAN).首先卷积神经网络从故障样本中提取故障特征,并将其作为对抗网络的输入,然后由解码器网络解码来自生成器的故障特征向量来生成故障样本,同时将提取的故障特征和训练过程中的故障诊断误差添加至生成器训练的损失函数中.实验表明本文提出的方法相比于基线模型(GAN-CNN)的平均F1值提高4%,较好地解决数据不平衡的分类问题.  相似文献   

3.
针对轴承故障数据严重失衡导致所训练的模型诊断能力和泛化能力较差等问题,提出基于Wasserstein距离的生成对抗网络来平衡数据集的方法。该方法首先将少量故障样本进行对抗训练,待网络达到纳什均衡时,再将生成的故障样本添加到原始少量故障样本中起到平衡数据集的作用;提出基于全局平均池化卷积神经网络的诊断模型,将平衡后的数据集输入到诊断模型中进行训练,通过模型自适应地逐层提取特征,实现故障的精确分类诊断。实验结果表明,所提诊断方法优于其他算法和模型,同时拥有较强的泛化能力和鲁棒性。  相似文献   

4.
生成对抗网络的出现对解决深度学习领域样本数据不足的研究起到了极大的促进作用。为解决生成对抗网络生成的图像出现轮廓模糊、前景背景分离等细节质量问题,提出一种改进梯度惩罚的Wasserstein生成对抗网络算法(PSWGAN-GP)。该算法在WGAN-GP的Wasserstein距离损失和梯度惩罚的基础上,在判别器中使用从VGG-16网络的3个池化层中提取的特征,并通过这些特征计算得出风格损失(Style-loss)和感知损失(Perceptual-loss)作为原损失的惩罚项,提升判别器对深层特征的获取和判别能力,对生成图像的细节进行修正和提升。实验结果表明,在生成器和判别器网络结构相同,并保证超参数相同的情况下,PSWGAN-GP的IS评分和FID评分相对于参与对比的其他图像生成算法有所提升,且可有效改善生成图片的细节质量。  相似文献   

5.
在牦牛高效养殖过程中, 牦牛等级评定是牦牛育种工作中的重要环节. 为了在牦牛等级评定研究中, 降低数据集分布不平衡对牦牛等级预测结果的影响, 提出一种基于改进条件生成对抗网络模型的牦牛等级评定模型VAE-CGAN. 首先, 为获取高质量生成样本, 模型通过引入变分自编码器取代条件生成对抗网络输入中的随机噪声, 降低了随机变量带来的不确定性. 此外, 模型将牦牛标签作为条件信息输入到生成对抗模型中来获取指定类别的生成样本, 生成样本及训练样本则会被用于训练深度神经网络分类器. 实验结果显示, 模型整体预测准确率达到了97.9%. 而且与生成对抗网络相比较, 在数量较少的特级牦牛等级预测上的精准率、召回率和F1值分别提升了16.7%、16.6%和19.4%. 实验结果表明该模型可以实现高精准度和低误分类率的牦牛等级分类.  相似文献   

6.
李燕萍  曹盼  左宇涛  张燕  钱博 《自动化学报》2022,48(7):1824-1833
提出一种基于i向量和变分自编码相对生成对抗网络的语音转换方法, 实现了非平行文本条件下高质量的多对多语音转换. 性能良好的语音转换系统, 既要保持重构语音的自然度, 又要兼顾转换语音的说话人个性特征是否准确. 首先为了改善合成语音自然度, 利用生成性能更好的相对生成对抗网络代替基于变分自编码生成对抗网络模型中的Wasserstein生成对抗网络, 通过构造相对鉴别器的方式, 使得鉴别器的输出依赖于真实样本和生成样本间的相对值, 克服了Wasserstein生成对抗网络性能不稳定和收敛速度较慢等问题. 进一步为了提升转换语音的说话人个性相似度, 在解码阶段, 引入含有丰富个性信息的i向量, 以充分学习说话人的个性化特征. 客观和主观实验表明, 转换后的语音平均梅尔倒谱失真距离值较基准模型降低4.80%, 平均意见得分值提升5.12%, ABX 值提升8.60%, 验证了该方法在语音自然度和个性相似度两个方面均有显著的提高, 实现了高质量的语音转换.  相似文献   

7.
针对现有的蒙特卡罗噪声去除方法存在的高频细节丢失问题,文中提出基于对抗生成网络的蒙特卡罗噪声去除方法.设计对抗网络结构,包括全卷积网络的生成网络和深度卷积网络的判别网络,用于蒙特卡罗噪声的去除.除了加入包括图像像素颜色外的多维辅助特征作为网络输入以外,还采用包含平滑损失在内的新的损失函数和基于法向量方差和梯度大小相似度偏差的图像局部重要性采样技术用于网络训练.实验表明,文中方法在去除蒙特卡罗噪声时不仅可以取得不错的量化指标,而且还保留图像的高频细节特征.  相似文献   

8.
深度生成模型综述   总被引:4,自引:2,他引:2  
通过学习可观测数据的概率密度而随机生成样本的生成模型在近年来受到人们的广泛关注,网络结构中包含多个隐藏层的深度生成式模型以更出色的生成能力成为研究热点,深度生成模型在计算机视觉、密度估计、自然语言和语音识别、半监督学习等领域得到成功应用,并给无监督学习提供了良好的范式.本文根据深度生成模型处理似然函数的不同方法将模型分...  相似文献   

9.
基于最大似然估计(Maximum likelihood estimation,MLE)的语言模型(Language model,LM)数据增强方法由于存在暴露偏差问题而无法生成具有长时语义信息的采样数据.本文提出了一种基于对抗训练策略的语言模型数据增强的方法,通过一个辅助的卷积神经网络判别模型判断生成数据的真伪,从而引导递归神经网络生成模型学习真实数据的分布.语言模型的数据增强问题实质上是离散序列的生成问题.当生成模型的输出为离散值时,来自判别模型的误差无法通过反向传播算法回传到生成模型.为了解决此问题,本文将离散序列生成问题表示为强化学习问题,利用判别模型的输出作为奖励对生成模型进行优化,此外,由于判别模型只能对完整的生成序列进行评价,本文采用蒙特卡洛搜索算法对生成序列的中间状态进行评价.语音识别多候选重估实验表明,在有限文本数据条件下,随着训练数据量的增加,本文提出的方法可以进一步降低识别字错误率(Character error rate,CER),且始终优于基于MLE的数据增强方法.当训练数据达到6M词规模时,本文提出的方法使THCHS30数据集的CER相对基线系统下降5.0%,AISHELL数据集的CER相对下降7.1%.  相似文献   

10.
王星  杜伟  陈吉  陈海涛 《控制与决策》2020,35(8):1887-1894
作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.  相似文献   

11.
近年来,生成对抗网络在约束图像生成方面表现出了较好的潜力,使其适用于图像超分辨率重建。针对基于卷积神经网络的图像超分辨率重建算法存在的特征信息利用率低的问题,基于生成对抗网络框架,提出了残差密集生成对抗网络的超分辨率重建算法。该算法定义生成器网络、判别器网络,通过构建残差密集网络作为生成器网络及PatchGAN作为判别器网络,以解决基于卷积神经网络的超分辨率算法中特征信息利用率低以及生成对抗网络收敛慢的问题。该重建算法在Set5等标准数据集上与主流的超分辨率重建算法进行对比,实验表明,该算法能够有效地提高特征信息利用率,较好地恢复低分辨率图像的细节信息,提高图像重建的质量。  相似文献   

12.
As one of the representative unsupervised data augmentation methods, generative adversarial networks (GANs) have the potential to solve the problem of insufficient samples in fault diagnosis of rotating machinery. However, the existing unsupervised GANs are usually incapable of simultaneously generating multi-mode fault samples and have some shortcomings such as mode collapse and gradient vanishing. To overcome these deficiencies, a supervised model called modified auxiliary classifier GAN (MACGAN) designed with new framework is proposed in this paper. Firstly, a new ACGAN framework is developed by adding an independent classifier to improve the compatibility between the classification and discrimination. Secondly, the Wasserstein distance is introduced in the new loss functions to overcome mode collapse and gradient vanishing. Finally, to achieve stable training, a spectral normalization is used to replace the weight clipping to constrain the weight parameters of discriminator. The proposed method is applied to fault diagnosis of bearing and gear. Compared with the existing GANs, the proposed method can more efficiently generate multi-mode fault samples with higher qualities, which can be used to assist the training of deep learning-based fault diagnosis models with high accuracy and good stability.  相似文献   

13.
生成对抗网络已经成为深度学习领域最热门的研究方向之一,其最大的优势在于能够以无监督的方式来拟合一个未知的分布。目前,生成对抗网络在图像生成领域大放异彩,其能够产生一些高质量的图像,但也暴露了一些弊端。在生成图像的过程中,经常会出现模式坍塌问题,从而导致生成的样本过于单一。为了解决这个问题,对生成对抗网络的模型结构和损失函数加以改进,使判别器能够从多个角度来度量生成数据的分布和真实数据的分布之间的差异,从而改善了生成样本的多样性。通过在多个数据集上进行实验,结果显示,提出的模型在很大程度上缓解了模式坍塌问题。  相似文献   

14.
Yuan  Chao  Wang  Hongxia  He  Peisong  Luo  Jie  Li  Bin 《Multimedia Tools and Applications》2022,81(5):6681-6701

In recent years, the development of steganalysis based on convolutional neural networks (CNN) has brought new challenges to the security of image steganography. However, the current steganographic methods are difficult to resist the detection of CNN-based steganalyzers. To solve this problem, we propose an end-to-end image steganographic scheme based on generative adversarial networks (GAN) with adversarial attack and pixel-wise deep fusion. There are mainly four modules in the proposed scheme: the universal adversarial network is utilized in Attack module to fool CNN-based steganalyzers for enhancing security; Encoder module is seen as the generator to implement the pixel-wise deep fusion for imperceptible information embedding with high payload; Decoder module is responsible for the process of recovering embedded information; Critic module is designed for the discriminator to provide objective scores and conduct adversarial training. Besides, multiple loss functions together with Wasserstein GAN strategy are applied to enhance the stability and availability of the proposed scheme. Experiments on different datasets have verified the advantages of adding universal adversarial perturbations for higher security against CNN-based steganalyzers without compromising imperceptibility. Compared with state-of-the-art methods, the proposed scheme has achieved better performance in security.

  相似文献   

15.
针对基于机器学习算法识别恶意网页时恶意网页样本收集困难的问题,提出了一种基于生成对抗网络(GAN)的扩展恶意网页样本数据集的方法(WS-GAN),使用少量的原始样本数据训练生成对抗网络,利用生成器模拟生成网页样本。同时在原有生成对抗网络的结构中加入了多个判别器:全局判别器判别整体样本的真伪,控制生成样本整体的质量;各特征判别器判别其对应类别特征数据的真伪,控制生成样本细节部分的质量。实验结果表明,WS-GAN生成的网页特征样本可用于恶意网页分类器的训练,并且其生成样本的质量优于条件生成对抗网络和条件变分自编码器生成样本的质量。  相似文献   

16.
传统的图像识别方法需要大量有标签样本进行训练,且模型训练难以达到稳定。针对这些问题,结合条件生成网络和信息最大化生成网络的结构优势建立了条件信息卷积生成网络(C-Info-DCGAN)。模型增加图像的类别信息和潜在信息作为输入数据,然后利用Q网络去更好地发挥类别信息和潜在信息对训练的引导作用,并且利用深度卷积网络来加强对图像特征的提取能力。实验结果表明,该方法能够加快模型训练收敛速度,并有效提高图像识别的准确率。  相似文献   

17.
邬龙  黎塔  王丽  颜永红 《软件学报》2019,30(S2):25-34
为了进一步利用近场语音数据来提高远场语音识别的性能,提出一种基于知识蒸馏和生成对抗网络相结合的远场语音识别算法.该方法引入多任务学习框架,在进行声学建模的同时对远场语音特征进行增强.为了提高声学建模能力,使用近场语音的声学模型(老师模型)来指导远场语音的声学模型(学生模型)进行训练.通过最小化相对熵使得学生模型的后验概率分布逼近老师模型.为了提升特征增强的效果,加入鉴别网络来进行对抗训练,从而使得最终增强后的特征分布更逼近近场特征.AMI数据集上的实验结果表明,该算法的平均词错误率(WER)与基线相比在单通道的情况下,在没有说话人交叠和有说话人交叠时分别相对下降5.6%和4.7%.在多通道的情况下,在没有说话人交叠和有说话人交叠时分别相对下降6.2%和4.1%.TIMIT数据集上的实验结果表明,该算法获得了相对7.2%的平均词错误率下降.为了更好地展示生成对抗网络对语音增强的作用,对增强后的特征进行了可视化分析,进一步验证了该方法的有效性.  相似文献   

18.
传统灰度图像着色方法存在颜色失真、效果不佳等问题,已逐渐被深度学习方法取代。目前基于深度学习的人像着色方法主要存在复杂背景下误着色的问题。针对上述问题,提出了联合一致循环生成对抗网络的人像着色方法。该方法在循环生成对抗网络的基础上,采用联合的一致性损失训练模型;生成网络采用U型网络结构(UNet)进行改进,以提高生成图像信息的完整性;判别网络中引入多特征融合的特征提取方式,增强特征对图像的细节表达。最后通过在自建的CASIA-PlusColors高质量人像数据集中的对比实验,验证了该方法对复杂背景中的人像着色有着更好的效果。  相似文献   

19.
针对攻击者利用生成式对抗网络技术(GAN)还原出训练集中的数据,泄露用户隐私信息的问题,提出了一种差分隐私保护梯度惩罚Wasserstein生成对抗网络(WGAN-GP)的方法.该方法在深度学习训练过程中对梯度添加精确计算后的高斯噪声,并使用梯度惩罚进行梯度修正,实现差分隐私保护.利用梯度惩罚Wasser-stein生成对抗网络与原始数据相似的数据.实验结果表明,在保证数据可用性的前提下,该方法可以有效保护数据的隐私信息,且生成数据具有较好的质量.  相似文献   

20.
随着深度学习的快速发展,基于生成对抗网络的文本图像合成领域成为了当下计算机视觉研究的热点。生成对抗网络同时包含生成器和鉴别器,通过两者的博弈来实现逼真数据的生成。受生成对抗网络的启发,近几年提出了一系列的文本图像合成模型,从图像质量、多样性、语义一致性方面不断取得突破。为推动文本图像合成领域的研究发展,对现有文本图像合成技术进行了全面概述。从文本编码、文本直接合成图像、文本引导图像合成方面对文本图像合成模型进行了分类整理,并详细探讨了各类基于生成对抗网络的代表性模型的模型框架和关键性贡献。分析了现有的评估指标和常用的数据集,提出了现有方法在复杂场景和文本、多模态、轻量化模型、模型评价方法等方面的不足和未来的发展趋势。总结了目前生成对抗网络在各领域的发展,重点关注了在文本图像合成领域的应用,可以作为一个研究人员进行图像合成研究时选择深度学习相关方法的权衡和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号