共查询到19条相似文献,搜索用时 62 毫秒
1.
为了解决B4C/Al复合材料制备过程中B4C颗粒分布不均、团聚及易与Al基体发生剧烈反应的问题。本文采用选区激光熔化法制备了B4C/Al复合材料,研究了激光功率和Ti元素对B4C/Al复合材料微观组织和力学性能的影响。结果表明:B4C/Al复合材料的致密度随激光功率的增大先增大后减少,激光功率240 W时致密度达到最大,为94.1%;制备过程中B4C颗粒易与Al基体发生界面反应并且随激光功率增大而增大,形成界面产物Al3BC和Al3B48C2脆性相和微裂纹,导致界面结合性能降低;加Ti的B4C/Al复合材料的致密度提高到95.2%,形成的界面产物TiC和TiB2能有效抑制界面反应,界面清晰完整,结合性能高,复合材料抗拉强度和伸长率分别提高41%、49.3%,拉伸断裂方式由脆性断裂转变为韧性断裂。 相似文献
2.
高含量B4C (B4C≥30wt%)颗粒增强Al基(B4CP/Al)复合材料具有优异的结构和功能特性,尤其是具有优异的中子吸收性能,在核防护领域被用做屏蔽材料使用。但由于高含量B4C颗粒的加入,使B4CP/Al复合材料变形困难。采用ABAQUS数值模拟方法对不同变形量下B4CP/Al复合材料的热轧过程进行数值模拟分析,在480℃温度下对热压烧结的B4CP/Al复合材料坯料进行轧制,并对其微观组织和力学性能进行分析。数值模拟结果表明,热轧变形量达到60%以上时,B4CP/Al复合材料板材表面中间区域应力较小,侧面应力较大,在板材边缘容易产生残余应力。研究结果表明,随轧制下压量的增加,B4CP/Al复合材料中B4C颗粒分布明显均匀,位错密度增加。当轧制变形量达到70%时,B4CP/Al复合材料的屈服强度提高至249.46 MPa,极限抗拉强度提高至299.56 MPa。在拉伸过程中,B4C颗粒优先断裂,但并未与基体界面脱黏,B4C颗粒承受了主要载荷,Al基体发生塑性流动,从而提高了B4CP/Al复合材料的强度。 相似文献
3.
采用先进粉末冶金技术(放电等离子烧结+热挤压)制备了三种体积分数(3vol%、5vol%、7vol%)的微/纳B4C增强6061Al复合材料,对不同制备阶段复合材料的微观组织(SEM、TEM、EBSD)进行观察分析,对复合材料的纳米压痕行为及拉伸性能进行测试。结果表明:烧结后B4C颗粒在基体中呈“网状”分布;挤压变形后B4C颗粒在基体实现弥散均匀分布。挤压变形后,纳米B4C在晶内及晶界均有分布,纳米B4C对位错的钉扎作用使得基体积累大量位错,提供驱动力并越过动态回复,使内部再结晶比例高达74%。当B4C体积分数为3vol%时,挤压态B4C/6061Al复合材料的抗拉强度、屈服强度及延伸率为219 MPa、88 MPa和22.5%,断裂形貌中呈现大量韧窝。 相似文献
4.
传统的耐磨钢铁材料难以满足现代矿山装备对关键耐磨部件的需求,陶瓷颗粒增强钢铁基耐磨复合材料成为最具良好应用前景的耐磨材料之一。通过预烧结获得不同体积分数及不同颗粒大小的陶瓷预制体,结合铸渗法制备出氧化锆(ZrO2)增韧氧化铝(Al2O3)陶瓷颗粒增强高铬铸铁(HCCI)基复合材料。结果表明:随着ZTA(ZrO2增韧Al2O3)颗粒体积分数(25%~45%)的增加,ZTA颗粒等效直径(1.7,1.2,0.4 mm)减小,复合材料抗冲击磨损性能随之提高,以颗粒体积分数为45%、等效粒径为0.4 mm时最佳。ZTAp/HCCI复合材料的主要磨损特征是磨损面发生微切削,其主要磨损机制是磨料磨损。 相似文献
5.
6.
用真空热压法制备不同B4C颗粒尺寸(7μm、14μm、20μm)的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料,研究了增强颗粒尺寸对其微观组织和力学性能的影响。结果表明,在这三种复合材料中B4C颗粒均匀分布,B4C-Al界面反应较为轻微,未见明显的界面反应产物。三种复合材料基体中沉淀相的尺寸基本相同(约为5.5 nm)。B4C颗粒的尺寸对复合材料力学性能有较大的影响。B4C颗粒尺寸为7μm的复合材料性能最佳,屈服强度为648 MPa,抗拉强度为713 MPa,延伸率为3.3%。随着颗粒尺寸的增大复合材料的强度和延伸率均降低。对三种复合材料的强化机制和断裂机制的分析结果表明:小尺寸B4C颗粒增强的复合材料强度较高,颗粒在变形过程中不易断裂,因此其塑性较好。 相似文献
7.
通过传统重力浇注工艺,用高铬铸铁金属溶液铸渗ZrO2增韧Al2O3(ZTA)陶瓷颗粒蜂窝状预制体,从而获得高铬铸铁基蜂窝陶瓷复合材料。将复合材料在930℃、980℃、1 030℃、1 080℃温度下淬火,并分别在230℃、330℃、430℃、530℃时回火,研究了热处理条件对高铬铸铁基蜂窝陶瓷复合材料组织及三体磨料磨损性能的影响。研究结果表明:在相同回火温度条件下,随着淬火温度的升高,复合材料硬度升高,其耐磨性也随之升高;在相同淬火温度条件下,随着回火温度的升高,材料的硬度及耐磨性能也随之升高,两者达到一定温度后其硬度及耐磨性都下降,材料耐磨性与材料的硬度变化趋势一致。最终得到复合材料的最佳热处理工艺为:1 030℃×2h,空冷+530℃×0.5h。 相似文献
8.
采用粉末冶金真空热压法制备了B4C质量分数为31%、平均颗粒尺寸分别为6.5 μm、9.3 μm、17.3 μm、28 μm、39.5 μm的纯Al和6061Al基体的复合材料。对复合材料进行微观结构和力学性能检测,结果表明:所有复合材料的B4C颗粒在基体中都均匀分布,且致密度都达到99%以上;对于纯Al基复合材料,随着颗粒尺寸增加,其致密度和塑性逐渐增加,强度逐渐下降;对于6061Al基复合材料,致密度随着颗粒尺寸的增加稍有降低,其强度和塑性受颗粒尺寸和热压温度共同影响,当热压温度610℃时,界面反应严重,随B4C颗粒尺寸增加,强度先下降后上升,塑性先上升后下降;当热压温度580℃时,界面反应轻微,复合材料强度逐渐下降,塑性逐渐上升。颗粒尺寸、界面反应和基体材料等均影响B4C增强铝基复合材料的力学性能。 相似文献
9.
将粒径为1~2 mm的ZrO2增韧Al2O3陶瓷颗粒(ZTAp)、高铬合金粉末和黏结剂混合真空烧结制备蜂窝状预制体,再浇注高铬铸铁液制备出ZTAp增强高铬铸铁基复合材料。采用SEM、EDS、XRD分析复合材料的界面微观结构和物相组成,通过三体磨损试验评价复合材料的耐磨性能。结果表明,烧结高铬铸铁基体在铸造过程中发生重熔,与铸造高铬铸铁基体呈冶金结合,ZTAp与金属基体界面结合致密,无裂纹、气孔等缺陷。复合材料三体耐磨性能达到高铬铸铁的3倍以上。将该复合材料应用于制备磨辊件,经过5 000 h服役,柱状区和复合区在磨辊半径方向上的磨损量分别为8.2 mm、5.9 mm,预计寿命可达到高铬铸铁磨辊的2倍以上。 相似文献
10.
氧化铝与耐热钢在高温下都具有优异的特殊性能,氧化铝硬度高、热稳定性好、耐热钢的抗氧化性与热强性高,因此氧化铝颗粒增强耐热钢基复合材料可望获得好的抗高温磨料磨损性能。在154~200 μm的氧化铝颗粒表面通过化学气相沉积技术获得Ni涂层后,通过在氧化铝颗粒中加入耐热钢颗粒的方法与负压铸渗技术,获得了氧化铝颗粒体积分数在18 %~52 %的氧化铝颗粒/耐热钢基复合材料,并考察了其在900℃的磨料磨损工况下的耐磨性。结果表明:所有复合材料的耐磨性均比耐热钢的好,耐磨性最好的复合材料是氧化铝颗粒体积分数为39 %的复合材料,其耐磨性是耐热钢的3.27倍。通过扫描电镜分析了复合材料的磨损机理及不同氧化铝颗粒体积分数复合材料的磨损行为。 相似文献
11.
为研发耐磨性能优良、成本相对低廉的高铬铸铁,本文分别以亚共晶、过共晶的水雾化Cr15高铬铸铁粉末为原料,采用超固相线液相烧结工艺制备了烧结高铬铸铁(SHCCI),并对其显微组织、力学性能和冲击磨粒磨损工况下的耐磨性能进行对比研究。结果表明,烧结高铬铸铁主要由M7C3碳化物、马氏体和奥氏体组成;在亚共晶烧结高铬铸铁中,通过电解腐蚀萃取的M7C3碳化物三维形貌呈珊瑚状,沿晶界均匀分布,材料抗冲击耐磨性能优良;在过共晶烧结高铬铸铁中,优先形成的初生碳化物可能成为共晶碳化物的生长基底,形成核-壳结构的M7C3碳化物,沿晶界相互连接呈网状,严重割裂基体。亚共晶、过共晶烧结高铬铸铁的力学性能分别为:硬度HRC63.9、HRC64.3,冲击韧性7.92、3.04 J/cm^2,抗弯强度2112.65、1624.87 MPa。 相似文献
12.
高铬铸铁耐泥沙磨损的机理探讨 总被引:2,自引:0,他引:2
在自制的模拟疏浚工况的立式泥沙磨损试验机上,对45钢和含碳量分别为2%和3%的高铬铸铁进行了泥沙磨损试验。运用扫描电镜观察了这几种材料在泥沙磨损条件下的磨损表面形貌,分析了它们的磨损机理。对于象45钢这类较软的材料,在泥沙磨损条件下,材料的磨损机理主要是显微切削和多次塑性变形。对于含有较多高硬度碳化物质点的高铬铸铁类材料,在泥沙磨损条件下,材料的磨损机理主要是基体组织的显微切削和碳化物颗粒的脱落。提出了在泥沙磨损条件下提高材料耐磨性的途径:一方面是如何减少基体组织的显微切削磨损;另一方面是如何使碳化物不易脱落,更好地起到保护基体的作用。 相似文献
13.
14.
在破碎、研磨、挖掘等机械设备上,因其常常受物料的冲击磨损,导致耐磨件快速失效,每年耐磨件消耗量很大,如何实现耐磨性和经济效益的有机统一是人们关注的问题。而耐磨材料也在不断地发展,从第一代钢铁耐磨材料Mn13到第三代钢铁耐磨材料高铬铸铁,再到陶瓷颗粒增强复合材料,以应对不同磨损工况。冲击磨料磨损是一种较为复杂的磨损工况,要求材料具有较高的硬度,同时材料还要保持一定的韧性以抵抗冲击力。针对冲击磨损工况下铁基耐磨材料,介绍了国内外耐磨材料的发展现状,概述了从高锰钢到复合材料,再到复合结构的发展过程,总结了复合材料从基体的选择到增强颗粒的选择,及多种颗粒混合增强的研究进展,重点对陶瓷颗粒增强铁基复合材料及复合结构进行了较为全面的介绍,从软质基体包嵌硬质单元和硬质基体包嵌强韧网络单元两种复合方式进行分析,并对未来复合结构技术的发展进行展望。 相似文献
15.
16.
To attain a wear‐resistant material compatible with high hardness and high toughness, Hadfield steel matrix was reinforced by oriented high chromium cast iron bars, through inserting high chromium alloys flux‐cored welding wires into Hadfield steel melt at 1500 ± 10 °C. The obtained composites were investigated by XRD, SEM, micro‐hardness, three‐body abrasion wear and impact toughness testers. The results show that the alloy powders inside the flux‐cored welding wires can be melted by the heat capacity of Hadfield steel melt and in situ solidified into high chromium cast iron bar reinforcements tightly embedded in the matrix. The micro‐hardness of reinforcements of the water‐quenched composite is about four times higher than that of the matrix. The impact toughness of the water‐quenched composite is higher than that of the as‐cast composite and lower than that of Hadfield steel, and its fracture mechanism is very complicated and refers to brittle and ductile mixture fracture mode. The excellent impact toughness and better wear resistance of the water‐quenched composite are attributed to combine fully the advantages and avoid the drawbacks of both Hadfield steel and high chromium cast iron. Additionally, in industrial application, the pulverizer plate produced by this composite, has also better wear resistance compared to the reference Hadfield steel pulverizer plate. 相似文献
17.
摩擦诱发高铬铸铁相变的透射电镜研究 总被引:2,自引:0,他引:2
利用透射电子显微镜研究了高铬铸铁在摩擦过程中的显微组织变化。结果表明:奥氏体基体在摩擦应力的作用下发生相变。摩擦表面形成α‘M。次表层形成γ与α’M共存区;γ与.ε共存区;γ位错丛聚区。 相似文献
18.