首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
First-principles calculations based on density functional theory and Grand Canonical Monte Carlo (GCMC) simulations are carried out to study the structure of a new Aluminum Metal-Organic Framework, MOF-519, and the possibility of storing molecular hydrogen therein. The optimized structure of the inorganic secondary building unit (SBU) of MOF-519 formed by eight octahedrally coordinated aluminum atoms is presented. The different storage sites of H2 inside the SBU and the BTB ligand are explored. Our results reveal that the SBU exhibits two different favorable physisorption sites with adsorption energies of ?12.2 kJ/mol and ?1.2 kJ/mol per hydrogen molecule. We have also shown that each phenyl group of BTB has three stable H2 adsorption sites with adsorption energies between ?6.7 kJ/mol and ?11.37 kJ/mol. Using GCMC simulations; we calculated the molecular hydrogen (H2) gravimetric and volumetric uptake for the SBU and MOF-519. At 77 K and 100 bar pressure, the hydrogen uptake capacity of SBU is considerably enhanced, reaching 16 wt.%. MOF-519 has a high gravimetric uptake, 10 wt.% at 77 K and 4.9 wt.% at 233 K. It has also a high volumetric capacity of 65 g/L at 77 K and 20.3 g/L at 233 K, indicating the potential of this MOF for hydrogen storage applications.  相似文献   

2.
    
Combined density functional theory and grand canonical monte Carlo (GCMC) calculations were performed to study the electronic structures and hydrogen adsorption properties of the Zn-based metal-organic framework MOF-650. The benzene azulenedicarboxylate linkers of MOF-650 were substituted by B atoms, N atoms, and boronic acid B(OH)2 linkers, and the Zn atoms were substituted by Mg and Ca atoms. The calculated electronic densities of states (DOSs) of MOF-650 showed that introduction of B atoms reduces the band gap but damages the structure of MOF-650. Introduction of single N bonds cannot provide active electrons to attract H2 molecules. Thus, substitutions of B and N into MOF-650 are not suggested. B(OH)2 substitute in MOF-650 decreased its band gap, slightly improved its hydrogen storage ability and made H2 molecules more intensively distributed besides organic linkers. GCMC calculations were carried out by estimating the H2 storage amount of the pure and modified MOFs at 77 and 298 K and from 1 bar to 20 bar. B(OH)2 linker and Mg/Ca co-doped MOF-650 showed increased H2 adsorption by approximately 20 wt%. The adsorption of H2 around different bonds showed the order N–C < C = C < B–C < C–O < B–O.  相似文献   

3.
To find ideal hydrogen storage media, hydrogen storage performance of Li decorated net-τ has been investigated by first-principles calculations. Maximum 6 Li atoms are adsorbed on net-τ, with the average binding energy of 2.15 eV for per Li atom. Based on 6Li-decorated net-τ, up to twenty H2 molecules are adsorbed, with a high H2 storage capacity of 12.52 wt% and an appropriate adsorption energy of 0.21 eV/H2. Finally, H2 uptake performance is measured by GCMC simulations. Our results suggest that Li-decorated net-τ may be a promising hydrogen storage medium under realistic conditions.  相似文献   

4.
Comparisons were made between the samples mechanochemically (MOF-5(M)) and solvothermally (MOF-5(S)) prepared for the development of efficient hydrogen storage medium. Synthesized samples were undergone structural characterization as well as adsorption equilibrium measurements of hydrogen at temperature-pressure range 77 K–87 K and 0.1–10 MPa. Grand Canonical Monte Carlo (GCMC) simulations were further conducted to study the behaviors of hydrogen molecules adsorbed on MOF-5. It shows that, besides the advantage of large scale synthesis and a lower cost, mechanochemical method respectively brings about 207% and 90.5% increments in the specific surface area and the maximum excess adsorption capacity of hydrogen at 77 K within pressure range 0–10 MPa. Results also reveal that the crystal within MOF-5(M) is regular and distributing uniformly with a mean size only one tenth of that of the MOF-5(S); at 77 K within pressure range 0–10 MPa, Toth equation can predict the adsorption equilibrium data of hydrogen on two MOF-5 samples with a mean relative error less than 1.5%. It suggests that MOF-5(M) is more promising for hydrogen storage by adsorption for practical applications.  相似文献   

5.
    
A three dimensional (3D) dumbbell-like nanostructure composed by interconnected fullerenes and nanotubes with Lithium decoration and boron-doping (37Li@C139B31) has been proposed in virtue of density functional theory (DFT) and first-principles molecular dynamics (MD) simulations which shows excellent geometric and thermal stability. First-principles calculations are performed to investigate the hydrogen adsorption onto the 37Li@C139B31. The results indicate that B substitution can improve the metal binding and the average binding energy of 37 adsorbed Li atoms on the C139B31 (2.79 eV) is higher than the cohesive energy of bulk Li (1.63 eV) suppressing the clustering. Meanwhile, the H2 storage gravimetric density of 178H2@37Li@C139B31 reaches up to 15.9 wt% higher than the year 2020 target from the US department of energy (DOE). The average adsorption energy of H2 molecules falls in a desirable range of 0.18–0.27 eV. Moreover, grand canonical ensemble Monte Carlo (GCMC) simulations reveal that at room temperature the hydrogen gravimetric density (HGD) adsorbed on 37Li@C139B31 reaches up to 11.6 wt% at 100 bars higher than the DOE 2020 target. Our multiscale simulations indicate that our proposed nanostructure provides a promising medium for hydrogen storage.  相似文献   

6.
Metal–organic Frameworks generate significant interest for their potential application as Hydrogen storage materials. Grand Canonical Monte Carlo (GCMC) simulations were performed at two different temperatures 77 and 300 K over a wide range of pressures to describe H2 adsorption in 7 metal–organic frameworks (MOFs), which all have the same framework topology but different surface chemistry and different pore sizes. DREIDING and UFF force fields were identified to be able to predict adsorption isotherms for H2 in MOFs in a reasonable agreement with the experimental data from the literature. This work reveals that at 77 K the total amount of H2 adsorbed correlates mainly with: the heat of adsorption at low pressure and the free volume at high pressure. While at 300 K the amount adsorbed mainly correlates with the available free volume at both low and high pressure. None of the MOFs studied fulfils DOE requirement, this is due to their low heat of adsorption. The required adsorption energy to meet the DOE targets is estimated to be 34 kJ/mol.  相似文献   

7.
    
Hydrogen storage capacity (HSC) of multilayer graphitic carbon nitride, d-g-C3N4 (d is interlayer spacing), and its palladium nanocomposite, d-Pd@g-C3N4, were investigated using multiscale computational techniques including quantum mechanics calculations and grand canonical Monte Carlo (GCMC) simulation. According to the results, the volumetric HSC of 8-g-C3N4 and 8-Pd@g-C3N4 can reach to DOE target of 30 gH2/L at 177 K, 5.7 MPa, and 177 K, 4.0 MPa, respectively. The gravimetric HSC of 10-g-C3N4 and 12-Pd@g-C3N4 meet the DOE target of 4.5 wt% at 150 K, 3.5 MPa, and 125 K, 4.0 MPa, respectively. The incorporation of Pd atoms enhances the delivery volumetric HSC of 6-, 8-, 10-, and 12-g-C3N4 by 49, 55, 129, and 146%, respectively at 177 K and 0.5 MPa. On the other hand, the incorporation of Pd atoms has a negative effect on the delivery gravimetric HSC of 6- and 8-g-C3N4 and positive effect for 10- and 12-g-C3N4. The estimated isostric heat, Qst, of adsorption is 5.5–8.5 kJ/mol. The maximum value of Qst for both nanoadsorbents belong to those with d = 8 Å. The structure of adsorbates and possibility of multilayer adsorption occurrence were also investigated using pair correlation functions and density profiles.  相似文献   

8.
    
  相似文献   

9.
    
A new-type 3D pillared graphene framework with hybrid fullerene and nanotube pillars (PGF-hFN) has been created depended on density functional theory (DFT) and first-principles molecular dynamics simulations (MD). It is proved to have excellent thermal structural stability. The average adsorption energy of Li is 2.77 eV much higher than the metal cohesive energy excluding lithium aggregation problem. From DFT calculations, for Li-decorated B-doped PGF-hFN, the hydrogen gravimetric density (HGD) is as high as 12.92 wt% and the according volumetric uptake is 96.4 g/L with an average adsorption energy of 0.195 eV per H2. Further grand canonical Monte Carlo (GCMC) simulations predict 7.2 wt% in excess HGD and 53.8 g/L in excess volumetric hydrogen density at near ambient temperature (233 K) and 100 bars with the ideal adsorption enthalpy which have exceeded the 2020 the U.S. Department of Energy (DOE) ultimate target for mobile applications. Our multiscale theoretical simulations indicate this new pillared structure should be a promising carrier accessible for sorption of hydrogen molecules.  相似文献   

10.
Over the past decade, metal-organic frameworks (MOFs) have been extensively studied as a novel approach to store hydrogen. The large surface area and volume of micropores that are intrinsic to MOFs make them ideal for gas adsorption. In addition, we chemically reduced MOF-5 by doping it with alkali metals (Li, Na, and K). We found that the H2 uptake capacity of MOF-5 materials doped with Li, Na, and K exceeded that of a neutral framework by 24%, 68%, and 70%, respectively. Notably, at the same levels of doping, the Li+-doped framework exhibited the strongest H2 binding, and the binding strength decreased sequentially in the order Li+ > Na+ > K+.  相似文献   

11.
Mixed MOF crystals with morphology similar to that of pure MOF-5 and pure MOF-177 were synthesized using two organic solvents: dimethylformamide (DMF) and diethylformamide (DEF). The mixed crystals were characterized with XRD, SEM and TGA for their physical properties and also evaluated for their hydrogen adsorption properties. The XRD and SEM results suggest that the mixed crystals are different from pure MOF-5 and pure MOF-177. The DMF-derived mixed MOF crystals have a slightly higher specific surface area, smaller pore diameter and greater pore volume than those of the DEF-derived crystals, and seem to be a better adsorbent than the DEF-derived crystals, which was confirmed by the higher hydrogen and nitrogen adsorption capacities on the DMF-derived crystals. The hydrogen adsorption capacities on the mixed MOF crystals are lower than those of pure MOF-5 and MOF-177. It was also observed that the hydrogen diffusion time constant increases with hydrogen pressure, and the heat of hydrogen adsorption decreases with adsorbed hydrogen amount on both mixed crystals.  相似文献   

12.
Metal–organic framework MOF-5 (Zn4O(BDC)3), a microporous material with a high surface area and large pore volume, was synthesized by three approaches: direct mixing of triethylamine (TEA), slow diffusion of TEA, and solvothermal synthesis. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen adsorption, and their hydrogen-storage capacities were measured. The different synthesis methods influenced the pore-structure parameters, morphologies and hydrogen-storage behavior of the obtained MOF-5. MOF-5 synthesized by the solvothermal approach showed a higher surface area and larger pore volume than the samples prepared by the other two approaches. Measurements of the hydrogen-storage behavior showed that the hydrogen-storage capacity was correlated with the specific surface area and pore volume of MOF-5.  相似文献   

13.
Recently calcium hydride has attracted attention as a possible component in ternary complex hydrides such as Ca(AlH4)2, Ca2SiHx and quaternary complex hydrides of the type Li–B–Ca–H. Although in bulk form CaH2 decomposes reversibly above 600° centigrade we were motivated to see whether calcium hydride in cluster form has properties suitable for hydrogen storage. We report here the results of DFT calculations using VASP® package for clusters CanH2n with n = 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 20 to get the ground state geometries, energies, bond lengths, and desorption energies, after molecular dynamics optimization. The desorption energy vs. cluster size n curve showed that the desorption energy goes up sharply to ∼1.4 eV per H2 for n up to 4, followed by a broad maximum of ∼1.8 eV per H2 around n = 12–14, and then tapers off to a nearly constant value of 1.6 eV per H2 approximating bulk behavior, which compares favorably with previously reported results. Comparison of these results with those of MgnH2n shows that CanH2n has a lesser potential as a hydrogen storage medium.  相似文献   

14.
The low thermal conductivity of the prototype hydrogen storage adsorbent, metal-organic framework 5 (MOF-5), can limit performance in applications requiring rapid gas uptake and release, such as in hydrogen storage for fuel cell vehicles. As a means to improve thermal conductivity, we have synthesized MOF-5-based composites containing 1–10 wt.% of expanded natural graphite (ENG) and evaluated their properties. Cylindrical pellets of neat MOF-5 and MOF-5/ENG composites with densities of 0.3, 0.5, and 0.7 g/cm3 are prepared and assessed with regard to thermal conductivity, specific heat capacity, surface area, and crystallinity. For pellets of density ∼0.5 g/cm3, we find that ENG additions of 10 wt.% result in a factor of five improvement in thermal conductivity relative to neat MOF-5, increasing from 0.10 to 0.56 W/mK at room temperature. Based on the relatively higher densities, surface areas, and enhanced crystallinity exhibited by the composites, ENG additions appear to partially protect MOF-5 crystallites from plastic deformation and/or amorphization during mechanical compaction; this suggests that thermal conductivity can be improved while maintaining the favorable hydrogen storage properties of this material.  相似文献   

15.
A multiscale approach is used to investigate the hydrogen adsorption in nanoporous Zeolite Imidazolate Frameworks (ZIFs) on varying geometries and organic linkers. Ab initio calculations are performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF structures. Subsequently, classical grand canonical Monte-Carlo (GCMC) simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions of pressure and temperature.  相似文献   

16.
LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3.  相似文献   

17.
    
A series of salts of the B12H122− anion has been prepared: a solvent-free (N2H5)2B12H12, its solvates – (N2H5)2B12H12·H2O, (N2H5)2B12H12·2(CH3CN), (N2H5)2B12H12·(CH3OH), and the salt of a protonated azine – [(CH3)2CNNHC(CH3)2]2B12H12. These compounds have been synthesized from the commercially available precursors via one- or two-step procedures and fully identified on the basis of single-crystal and powder X-ray diffraction. At room temperature (N2H5)2B12H12 crystallizes in C2/c space group, with a = 18.480(5) Å, b = 6.5344(19) Å, c = 13.106(4) Å and β = 131.911(16)o, V = 1177.8(7) Å3, Z = 4. While this compound nominally contains ca. 10.7 wt% of hydrogen, it thermally decomposes above 200 °C releasing mainly N2 and NH3, with H2 being only the minor gaseous product. Contrary to the recently reported case of hydrazinates of borohydrides, doping with 5 mol% of FeCl3 does not increase the relative amount of hydrogen significantly, however, it alters the ratio of N2 and NH3.  相似文献   

18.
    
The role of Mn substitution in FeTi towards the hydrogenation kinetics and hydrogen storage capacity was investigated using a combination of experimental and theoretical tools. Pristine and Mn-substituted FeTi was produced by electro-deoxidation of oxide precursors, such as natural ilmenite, titania and manganese dioxide. The produced materials were evaluated for hydrogen storage capacity. Ab-initio density functional theory (DFT) calculations were performed to understand the thermodynamics and kinetics of hydrogen absorption in pristine and doped FeTi. DFT calculations demonstrate that although thermodynamic and kinetic parameters of hydrogen absorption with Mn substitution is similar to those in the pristine FeTi, oxygen affinity of Mn at the surface is higher than Fe or Ti. We conclude that Mn acts as a sacrificial oxidizing element and oxidizes more readily at the surface over Fe or Ti, resulting in easy activation of the FeTi alloy. We show superior cyclic-hydrogen absorption behavior in bulk in FeTi with Mn substitution. After 20 charge-discharge cycles, the measured hydrogen storage capacity of FeTi with Mn substitution was steady ~120 mA h/g (0.8 wt %), which is noticeably higher than that of pristine FeTi. The experimental and theoretical results shows that in case of a practical hydrogen storage scenario, Mn substitution will benefit in reducing absorption fatigue in FeTi. Further, most likely it may not be possible to use pristine FeTi phase.  相似文献   

19.
Reliable design, analysis and optimization of on-board adsorptive hydrogen storage systems require mathematical models that capture the key physics across multiple scales. Pellets of adsorbent may sometimes be preferred for adsorptive storage in fixed beds, compared to powders. Heat and mass transfer within individual pellets play a significant role in the overall dynamics of a fixed bed filled with adsorbent pellets. However, multiscale dynamical model that captures the effect of pellet behavior on the overall dynamics of adsorbent bed is so far missing. In this study, a combined bed–and–pellet “1D-plus-1D” model is developed and analyzed for hydrogen adsorption in a fixed bed of MOF-5 pellets at cryogenic temperatures. Specifically, a 1D axial bed model with mass, momentum and energy balance equations is coupled with a 1D radial pellet model comprising of mass and heat transfer with adsorption within the pellets present at different locations in the bed. The 1D bed and 1D pellet model equations are coupled through surface fluxes on the pellet. We show that internal diffusional resistances within pellets must be considered for pellets greater than 2 mm diameter, for parameters relevant to MOF-5 pellets. The role of various physical parameters of pellets is analyzed.  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号