共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(97):41138-41153
We present a pore-scale simulation of the capillary condensation of water in the cathode catalyst layer (CCL) of proton exchange membrane fuel cells by the lattice Boltzmann method. Based on the reconstructed CCL, the capillary condensation process in CCL is simulated under different humidity conditions, and the effects of porosity and especially wettability on the liquid water distribution in CCL are studied. The influence of liquid water on the void pore size distribution and pore connectivity in CCL is evaluated, and the results show that the hydrophilic CCL is more prone to be flooded. Subsequently, the effective transport coefficients of oxygen and proton in partially saturated CCL are investigated. The results reveal that the hydrophobic CCL is beneficial for reducing the gas transport tortuosity but simultaneously causes a higher Knudsen diffusion resistance. By comprehensively considering the changes in tortuosity and Knudsen resistance caused by liquid water, a more practical correlation of effective diffusivity for the partially saturated CCL is proposed. Moreover, this work proves the vital role of liquid water in the proton conduction in CCL. The simulated effective proton conductivity in CCL is more agree with the measurements if the contribution of liquid water to proton transport is considered. 相似文献
2.
Jerome Dillet Olivier Lottin Sophie Didierjean Caroline Bonnet 《Journal of power sources》2010,195(9):2795-8040
A small single-channel fuel cell prototype was built with the objective of monitoring the appearance and transport of water droplets in the gas channels in usual operating conditions. It allows the simultaneous observation of droplets and of their local effects on current density. The first results show that the air flow rate seems to control the transition between two different water removal mechanisms: a plug flow when the air stoichiometry is low, with significant disturbances in the local current density, pressure drop and fuel cell performance, and a more conventional flow with steadier removal of smaller droplets when the stoichiometry is higher. 相似文献
3.
Julien Marie Regis Chenitz Marian Chatenet Sandrine Berthon-Fabry Nathalie Cornet Patrick Achard 《Journal of power sources》2009,190(2):423-434
Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H2/air-fed PEM fuel cell. The cathodes were tested as 50 cm2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers. 相似文献
4.
Boubekeur Dokkar N. Eddine SettouOmar Imine Nadia SaifiBelkhir Negrou Zoubir Nemouchi 《International Journal of Hydrogen Energy》2011,36(6):4220-4227
A single phase computational fuel cells model is presented to elucidate three-dimensional interactions between mass transport and electrochemical kinetics in proton exchange membrane (PEM) fuel cells with straight gas channels. The governing differential equations are solved over a single computational domain, which consists of a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. Emphasis is placed on obtaining a basic understanding of how three-dimensional flow and transport phenomena in the air cathode impact the electrochemical process in the flow field. The complete cell model has been validated against experimentally measured polarization curve, showing good accuracy in reproducing cell performance over moderate current density interval. Fully three-dimensional results of the flow structure and species profiles are presented for cathode flow field. The effects of pressure on oxygen transport and water removal are illustrated through main axis of the flow structure. The model results indicate that oxygen concentration in reaction sites is significantly affected by pressure increase which leads to rising fuel cells power. 相似文献
5.
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as “flooding”, on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process. 相似文献
6.
Rapidah OthmanAndrew L. Dicks Zhonghua Zhu 《International Journal of Hydrogen Energy》2012,37(1):357-372
Low temperature fuel cells, such as the proton exchange membrane (PEM) fuel cell, have required the use of highly active catalysts to promote both the fuel oxidation at the anode and oxygen reduction at the cathode. Attention has been particularly given to the oxygen reduction reaction (ORR) since this appears to be responsible for major voltage losses within the cell. To provide the requisite activity and minimse losses, precious metal catalysts (containing Pt) continue to be used for the cathode catalyst. At the same time, much research is in progress to reduce the costs associated with Pt cathode catalysts, by identifying and developing non-precious metal alternatives. This review outlines classes of non-precious metal systems that have been investigated over the past 10 years. Whilst none of these so far have provided the performance and durability of Pt systems some, such as transition metals supported on porous carbons, have demonstrated reasonable electrocatalytic activity. Of the newer catalysts, iron-based nanostructures on nitrogen-functionalised mesoporous carbons are beginning to emerge as possible contenders for future commercial PEMFC systems. 相似文献
7.
Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell
Water management is a significant challenge in portable polymer electrolyte membrane (PEM) fuel cells and particularly in proton exchange membrane (PEM) fuel cells with air-breathing cathodes. Liquid water condensation and accumulation at the cathode surface is unavoidable in a passive design operated over a wide range of ambient and load conditions. Excessive flooding or dry out of the open cathode can lead to a dramatic reduction of fuel cell power. We report a water management design based on a hydrophilic and electrically conductive wick. A prototype air-breathing fuel cell with the proposed water management design successfully operated under severe flooding conditions, ambient temperature 10 °C and relative humidity of 80%, for up to 6 h with no observable cathode flooding or loss of performance. 相似文献
8.
In this work, a three-dimensional, steady-state, multi-agglomerate model of cathode catalyst layer in polymer electrolyte membrane (PEM) fuel cells has been developed to assess the activation polarization and the current densities in the cathode catalyst layer. A finite element technique is used for the numerical solution to the model developed. The cathode activation overpotentials, and the membrane and solid phase current densities are calculated for different operating conditions. Three different configurations of agglomerate arrangements are considered, an in-line and two staggered arrangements. All the three arrangements are simulated for typical operating conditions inside the PEM fuel cell in order to investigate the oxygen transport process through the cathode catalyst layer, and its impact on the activation polarization. A comprehensive validation with the well-established two-dimensional “axi-symmetric model” has been performed to validate the three-dimensional numerical model results. Present results show a lowest activation overpotential when the agglomerate arrangement is in-line. For more realistic scenarios, staggered arrangements, the activation overpotentials are higher due to the slower oxygen transport and lesser passage or void region available around the individual agglomerate. The present study elucidates that the cathode overpotential reduction is possible through the changing of agglomerate arrangements. Hence, the approaches to cathode overpotential reduction through the optimization of agglomerate arrangement will be helpful for the next generation fuel cell design. 相似文献
9.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance. 相似文献
10.
11.
In this study, numerical simulation has been carried out for the heat transfer and temperature distribution in the cathode of polymer electrolyte membrane fuel cells along with the multi‐phase and multi‐species transport under the steady‐state condition. The commercial software, COMSOL Multiphysics, is used to solve the conservation equations for momentum, mass, species, charge and energy numerically. The conservation equations are applied to the solid, liquid and vapor phases in the bipolar plate and gas diffusion (GDL) and catalyst layers of a two‐dimensional cross section of the cathode. The catalyst layer is assumed to be a finite domain and the water production in the catalyst layer is considered to be in the liquid form. The temperature distribution in the cathode is simulated and then the effects of the relative humidity of the air stream, the permeability of the cathode and the flow channel shoulder to channel width ratio are investigated. It is shown that the highest temperature change, both in the in‐plane and across‐the‐plane directions, occurs in the GDL, while the highest temperature is reached in the catalyst layer. The distribution of temperature in the bipolar plate is shown to be relatively uniform due to the high thermal conductivity of the plate. A decrease in the inlet relative humidity of the air stream results in the decrease of the maximum temperature due to the absorption of heat during the evaporation of liquid water in the GDL and catalyst layer. The non‐uniformity of the temperature distribution, especially in the catalyst layer, is observed with the increase of the permeability of the cathode. Similarly, the decrease of the channel shoulder to channel width ratio leads to a non‐uniform distribution of temperature especially under the channel areas. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system’s components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. 相似文献
13.
Numerical simulation has been carried out of the fluid flow, heat and mass transfer for the developing laminar flow in polymer electrolyte membrane (PEM) fuel cell cathode and anode flow channels, respectively. Each flow channel is considered to be composed of two parallel walls, one porous (simulating electrode surface) and one non‐porous, or impermeable, wall (simulating bipolar plate surface). Various flow situations have been analyzed, and the local and the averaged friction coefficient, Nusselt number for heat transfer and Sherwood number for mass transfer are determined for various flow conditions corresponding to different stoichiometries, operating current densities and operating pressures of the cell. The effect of suction or injection (blowing) wall boundary condition has also been investigated, corresponding to the oxygen consumption in the cathode and hydrogen consumption in the anode. Correlations for the averaged friction coefficient, Nusselt and Sherwood numbers are developed, which can be useful for PEM fuel cell modeling and design calculations. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
Bouchra Wahdame Denis Candusso Xavier François Fabien Harel Marie-Cécile Péra Daniel Hissel Jean-Marie Kauffmann 《International Journal of Hydrogen Energy》2007
The first phase of a research program on PEMFC durability was devoted to the test of a 100 W stack operated in stationary regime during 1000 h. The second phase was dedicated to the test of another 100 W stack under dynamical current constraint. In this case, the load current cycle applied was computed from a standardised transportation mission profile and then adapted to the power of the investigated fuel cell. For both ageing experiments, the stack characterisations were based on polarisation curves, recorded for various stoichiometry rates, as well as on EIS measurements performed at regular time-spaced intervals throughout the ageing. Some analysis tools derived from the response surface methodology are employed to analyse and compare the results of the two durability experiments. Some numerical models are proposed for the degradation of the stack performances. They are finally used to optimise the fuel cell operating conditions versus ageing time. 相似文献
15.
Shivesh Chaudhary Vinay K. SachanPrashant K. Bhattacharya 《International Journal of Hydrogen Energy》2014
With the focus on water uptake by proton exchange membrane, a two-phase, non isothermal, transient and two-dimensional model of fuel cell is developed. Further, in order to obtain the equilibrium concentration of water in the membrane, two different approaches of water-uptake by the membrane are considered; though each takes into account the Schroeder's paradox as well as individual contributions of water vapour and liquid water. Furthermore, in both the approaches, rate of water uptake is proportional to the difference between equilibrium concentration and actual concentration of water in membrane. Model results show good agreement with the experimental results. A comparative analysis of the two approaches has been presented for various results, such as liquid saturation, net drag coefficient, temperature, water content in membrane, etc. Obtained results revealed significant difference between predicted current densities, water content of membrane and temperatures for the two approaches. These differences may be reflecting the need to correctly understand water uptake by membrane and its importance for accurate modelling of fuel cell. Response in transient state of fuel cell is also studied when a step change to cell voltage is applied. Likewise, studies on rate of sorption and desorption of water by membrane explain the increase or decrease of the water content of membrane. 相似文献
16.
A three-dimensional steady state two-phase non-isothermal model which highly couples the water and thermal management has been developed to numerically investigate the spatial distribution of the interfacial mass transfer phase-change rate in the cathode side of a proton exchange membrane fuel cell (PEMFC). A non-equilibrium evaporation-condensation phase change rate was incorporated in the model which allowed supersaturation and undersaturation take place. The most significant effects of phase-change rate on liquid saturation and temperature distributions are highlighted. A parametric study was also carried out to investigate the effects of operating conditions; namely as the channel inlet humidity, cell operating temperature, and inlet mass flow rate on the phase-change rate. It was also found that liquid phase assumption for produced water in the cathode catalyst layer (CL) changed the local distribution of phase-change rate. The maximum evaporation rate zone (above the channel near the CL) coincided with the maximum temperature zone and resulted in lowering the liquid saturation level. Furthermore, reduction of the channel inlet humidity and an increase of the operation temperature and inlet mass flow rate increased the evaporation rate and allowed for dehydration process of the gas diffusion layer (GDL) to take place faster. 相似文献
17.
The effect of flow distributors on the liquid water distribution and performance of a PEM fuel cell 总被引:1,自引:0,他引:1
P.K. Jithesh A.S. BansodeT. Sundararajan Sarit K. Das 《International Journal of Hydrogen Energy》2012
Water management is one of the important factors which determine the performance of a Proton Exchange Membrane (PEM) fuel cell using hydrogen as fuel. For developing efficient water management systems, it is important to know the potential locations of formation and the nature of distribution of liquid water in the fuel cell. In the present study a PEM fuel cell with three different types of flow distributors are modeled and numerically simulated to find out the water formation and distribution characteristics. The model is validated by comparing the simulated polarization curve to experimental data. It is found that the type of flow distributor used plays a major role in determining the distribution of liquid water in the cell. A parallel flow distributor exhibits poor water removal capabilities whereas a serpentine flow distributor exhibits better water removal. A mixed flow distributor is found to give better water distribution characteristics compared to the parallel and serpentine distributors. Further the effect of liquid water formation and distribution on the species transport, temperature distribution and current generation are also investigated. 相似文献
18.
Mohammad J. Kermani John M. Stockie 《International Journal of Hydrogen Energy》2011,36(20):13235-13240
In this paper, we have developed an approximate formula for liquid saturation within a two phase condensing mixture that relates the saturation level to the slip velocity between the gas and liquid phases. In particular, we have explained why models in which the slip velocity is assumed to be zero exhibit a saturation that is several orders of magnitude smaller than in other models where slip velocity was allowed to vary. This is a discrepancy that has appeared in computed results reported in the fuel cell literature, but which has not yet received a satisfactory explanation. We demonstrate that the reason behind the large discrepancy is rooted in the type of model used to treat the slip velocity between phases. 相似文献
19.
Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. 相似文献
20.
Y. B. Kim 《国际能源研究杂志》2012,36(4):509-522
This paper investigates the effects of relative humidity (RH) and stoichiometry of reactants on the water saturation and local transport process in proton exchange membrane fuel cells. A two‐dimensional model was developed, taking into account the effect of the formation of liquid water on the reactant transport. The results indicate that the reactant RH and stoichiometry significantly affect cell performance. At a constant anode RH = 100%, a lower cathode RH maintains membrane hydration to give better cell performance. At a constant cathode RH = 100%, a lower anode RH not only provides more hydrogen to the catalyst layer to participate in the electrochemical reaction but also increases the difference in the water concentrations between the anode and cathode. This enhances the back‐diffusion of water from the cathode to the anode, reducing possible flooding for better cell performance. Higher anodic stoichiometry results in the reduction of cathodic water saturation by increasing water back‐diffusion, thereby enhancing fuel cell performance. Higher cathodic stoichiometry also reduces water saturation by drying more liquid water to increase cathode local current density. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献