首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential benefits of closed adult nucleus multiple ovulation and embryo transfer (MOET) and conventional progeny testing (CNS) schemes, and the logistics of their integration into large-scale continuous production of crossbred cattle were studied by deterministic simulation. The latter was based on F1 (Bos taurus x Bos indicus) production using AI or natural mating and MOET, and continuous F2 production by mating of F1 animals. The gene flow and the cumulative discounted expressions (CDES) were also calculated. Both schemes had 8, 16, 32, or 64 dams with 2, 4, 8, 16, or 32 sires selected. In the MOET nucleus scheme (MNS), the test capacity was 1, 2, 8, or 16 offspring, and the number of matings per dam per year was 1, 2, or 4. A scheme of 8 sires with 64 dams and a test capacity of 4 female offspring per dam per year resulted in an annual genetic gain (in phenotypic standard deviation) of 0.324 and 0.081 for MNS and CNS, respectively. In the MNS, there was substantial genetic gain with a relatively small number of animals compared with a CNS. The F1 had the highest, and the F2 scheme the lowest CDES. However, a very large number of B. indicus females would be required in the F1 scheme. This scheme may not be practical under conditions in developing countries. The F2 scheme was logistically attractive because it produces its own replacements, and the number of B. taurus females required would be easy to attain. Accompanying technical and financial constraints of nucleus schemes should be addressed before applying them.  相似文献   

2.
The availability of different single nucleotide polymorphism (SNP) chips and the development of imputation algorithms allow for multistage dairy cattle breeding schemes applying various genomic selection strategies. These SNP genotypes yield genomically estimated breeding values (GEBV) with different accuracies at different costs. Thus, the optimum allocation of investments to different selection paths and strategies to maximize the genetic gain per year (ΔG(a)) and its sensitivity to changes in cost and accuracies of GEBV is of great interest. This is even more relevant under the constraints of limited financial resources. With deterministic methods, optimum multistage breeding plans maximizing ΔG(a) were identified in which selection could take place on GEBV derived from high-density (GEBV(HD)) and low-density (GEBV(LD)) SNP genotypes. To account for the uncertainty of cost and accuracies of GEBV, these parameters were varied in a semi-continuous manner. Overall breeding costs were limited to the crucial expenses of a traditional breeding program with 50 progeny-tested young bulls per year. Results clearly show that, in an optimal selection strategy, selection on GEBV(LD) is predominantly used for the identification of future bull dams but the main part of ΔG(a) is still generated from selection of sires. The low selection intensity in the path dam to sire induced a higher sensitivity of ΔG(a) to changes in cost and accuracies of GEBV(LD) compared with the same changes of GEBV(HD). On the contrary, the genetic gain generated from selection of males was only affected by changes in accuracies of GEBV(HD) but almost unaffected by any changes in cost. Thus, changes in cost and accuracies of GEBV(LD) put the most pressure on the breeding scheme structure to maintain a high ΔG(a). Furthermore, genomic selection of bull dams produced by far the majority of breeding cost but the lowest genetic gain.  相似文献   

3.
Local breeds are rarely subject to modern selection techniques; however, selection programs will be required if local breeds are to remain a viable livelihood option for farmers. Selection in small populations needs to take into account accurate inbreeding control. Optimum contribution selection (OCS) is efficient in controlling inbreeding and maximizes genetic gain. The current paper investigates genetic progress in simulated dairy cattle populations from 500 to 6,000 cows undergoing young bull selection schemes with OCS compared with truncation selection (TS) at an annual inbreeding rate of 0.003. Selection is carried out for a dairy trait with a base heritability of 0.3. A young bull selection scheme was used because of its simplicity in implementation. With TS, annual genetic gain from 0.111 standard deviation units with 500 cows increases rapidly to 0.145 standard deviation units with 4,000 cows. Then, genetic gain increases more slowly up to 6,000 cows. At the same inbreeding rate, OCS produces higher genetic progress than TS. Differences in genetic gain between OCS and TS vary from to 2 to 6.3%. Genetic gain is also improved by increasing the number of years that males can be used as sires of sires. When comparing OCS versus TS at different heritabilities, we observe an advantage of OCS only at high heritability, up to 8% with heritability of 0.9. By increasing the constraint on inbreeding, the difference of genetic gain between the 2 selection methods increases in favor of OCS, and the advantage at the inbreeding rate of 0.001 per generation is 6 times more than at the inbreeding rate of 0.003. Opportunities exist for selection even in dairy cattle populations of a few hundred females. In any case, selection in local breeds will most often require specific investments in infrastructure and manpower, including systems for accurate data recording and selection skills and the presence of artificial insemination and breeders organizations. A cost-benefit analysis is therefore advisable before considering the implementation of selection schemes in local dairy cattle breeds.  相似文献   

4.
Genomic selection has the potential to revolutionize dairy cattle breeding because young animals can be accurately selected as parents, leading to a much shorter generation interval and higher rates of genetic gain. The aims of this study were to assess the effects of genomic selection and reduction of the generation interval on the rate of genetic gain and rate of inbreeding. Furthermore, the merit of proven bulls relative to young bulls was studied. This is important for breeding organizations as it determines the relative importance of progeny testing. A closed nucleus breeding scheme was simulated in which 1,000 males and 1,000 females were born annually, 200 bulls were progeny tested, and 20 sires and 200 dams were selected to produce the next generation. In the “proven” (PROV) scenario, only cows with own performance records and progeny-tested bulls were selected as parents. The proportion of the genetic variance that was explained by simulated marker information (M) was varied from 0 to 100%. When M increased from 0 to 100%, the rate of genetic gain increased from 0.238 to 0.309 genetic standard deviations (σ) per year (+30%), whereas the rate of inbreeding reduced from 1.00 to 0.42% per generation. Alternatively, when young cows and bulls were selected as parents (YNG scenario), the rate of genetic gain for M = 0% was 0.292 σ/yr but the corresponding rate of inbreeding increased substantially to 3.15% per generation. A realistic genomic selection scheme (YNG with M = 40%) gave 108% higher rate of genetic gain (0.495 σ/yr) and approximately the same rate of inbreeding per generation as the conventional system without genomic selection (PROV with M = 0%). The rate of inbreeding per year, however, increased from 0.18 to 0.52% because the generation interval in the YNG scheme was much shorter. Progeny-testing fewer bulls reduced the rate of genetic gain and increased the rate of inbreeding for PROV, but had negligible effects for YNG because almost all sires were young bulls. In scenario YNG with M = 40%, the best young bulls were superior to the best proven bulls by 1.27 σ difference in genomic estimated breeding value. This superiority increased even further when fewer bulls were progeny tested. This stochastic simulation study shows that genomic selection in combination with a severe reduction in the generation interval can double the rate of genetic gain at the same rate of inbreeding per generation, but with a higher rate of inbreeding per year. The number of progeny-tested bulls can be greatly reduced, although this will slightly affect the quality of the proven bull team. Therefore, it is important for breeding organizations to predict the future demand for proven bull semen in light of the increasing superiority of young bulls.  相似文献   

5.
Potential rates of genetic progress are limited by biological constraints, which along with genetic parameters determine the structure of breeding programs to be employed for maximum genetic improvement. The objective here is to determine whether current progeny-testing programs in dairy cattle, which have been dictated and constrained by low female reproductive rates, need to be changed to capitalize on new reproductive technologies and how these changes should be implemented. Many differences between breeding programs diminish when selection on animal model genetic evaluations across all age and population groups is adopted as a strategy. Progeny-testing schemes then evolve toward dispersed open nucleus breeding schemes when multiple ovulation and embryo transfer is used on bull-dams. Nucleus breeding schemes have been advocated to capitalize on embryo transfer technology. In nucleus breeding schemes utilizing high reproductive rates, inbreeding, rather than reproductive rate, poses a limit to genetic progress, and strategies that maximize response to selection while limiting inbreeding need to be employed. One strategy is mating each dam to several sires rather than only one sire. In vitro embryo production techniques can be used to facilitate such mating strategies. Large-scale in vitro embryo production programs, in which large numbers of embryos per female are tested in the commercial population, offer the greatest potential for genetic gain with low rates of inbreeding. Cloning has an impact mainly on methods for dissemination of genetic improvement. Breeding herds, genetically inferior to marketed clones, are needed for continuous genetic gain. Reproductive technologies offer the potential for genetic improvement. Whether new breeding programs require changes in population structure, e.g., by creation of nucleus breeding herds, depends mainly on logistics and on quantity and quality of field information.  相似文献   

6.
The effectiveness of nucleus breeding schemes based on multiple ovulation and embryo transfer in practice is highly dependent upon the achieved reproductive rate. This study quantifies the effects of donor cow variability in response to superovulation (random and phenotypically correlated with milk yield) and failure rates (proportion of selected cows producing no transferable embryos) on the mean and variance of realized female selection differentials as affected by herd size, average embryo yield, and the coefficient of variation for embryo yield. Results show that differences in failure rates (0 to 40%) reduced realized female selection differentials up to 64%. The existence of a negative phenotypic correlation (-.3) between donor cow embryo yield and milk yield caused smaller reductions (up to 19%). Variability in realized female selection differentials is largest for small nucleus units and should not be neglected when planning the establishment of a nucleus breeding unit. The use of multiple flushes rather than a single flush per cow to produce the same average number of transferable embryos can reduce the variability in realized selection differentials but increases generation interval. Variability in response to superovulation will also affect inbreeding rates and the average accuracy of selection. Simulation studies are needed to quantify the total effect of variability in response to superovulation on the genetic responses possible in nucleus breeding schemes relying on multiple ovulation and embryo transfer.  相似文献   

7.
This study investigated whether selection using genotype information reduced the rate and level of true inbreeding, that is, identity by descent, at a selectively neutral locus as well as a locus under selection compared with traditional BLUP selection. In addition, the founder representation at these loci and the within-family selection at the nonneutral locus were studied. The study was carried out using stochastic simulation of a population resembling the breeding nucleus of a dairy cattle population for 25 yr. Each year, 10 proven bulls were selected across herds along with 100 dams from within each of 40 herds. Selection was performed using BLUP, marker-assisted, or gene-assisted selection for a trait with low heritability (h2 = 0.04) only expressed in females, mimicking a health trait. The simulated genome consisted of 2 chromosomes. One biallelic quantitative trait loci (QTL) with an initial frequency of the favorable allele of 0.1, and initially explaining 25% of the genetic variance as well as 4 markers were simulated in linkage disequilibrium, all positioned at chromosome 1. Chromosome 2 was selectively neutral, and consisted of a single neutral locus. The results showed that in addition to reducing pedigree-estimated inbreeding, the incorporation of genotype information in the selection criteria also reduced the level and rate of true inbreeding. In general, true inbreeding in the QTL was greater than pedigree-estimated inbreeding with respect to both the level and rate of inbreeding, as expected. Also as expected, true and pedigree-estimated inbreeding in the neutral locus were the same. Furthermore, after 25 yr, or approximately 5 generations, the pedigree-estimated level of inbreeding was reduced by 11 and 24% compared with BLUP in gene- and marker-assisted selection, respectively, and the level of true inbreeding in the QTL was reduced by 22 and 13%, respectively. The difference between selection scenarios was found to be caused by a larger number of founders being represented at the QTL when using genotype information in the selection criteria. This in turn was caused by an increased selection of individuals sharing the favorable QTL allele rather than individuals sharing genes on average, which was shown by a higher Mendelian selection differential in the QTL. Hence, even though the selection pressure was increased at the QTL, more variation was retained. The results suggest that marker-assisted selection is a useful selection strategy.  相似文献   

8.
The use of sexed semen to produce purebred replacement heifers allows a large proportion of dairy cows to be mated to beef sires, and quantitative and qualitative improvements to be made to beef production from dairy herds. The major dairy and beef breeds are undergoing rapid genetic improvement as a result of more efficient selection methods, prompting a need to evaluate the meat production of crossbred beef × dairy cattle produced using current genetics. As part of a large project involving 125 commercial dairy farms, we evaluated the combined use of purebreeding with sexed semen and crossbreeding with semen from beef sires, particularly double-muscled breeds. A survey of 1,530 crossbred calves revealed that, whereas purebred dairy calves are destined almost exclusively for veal production, beef × dairy crossbred calves are also destined for beef production after fattening on either the dairy farm of birth or by specialized fatteners. In veal production, compared with Belgian Blue–sired calves (taken as the reference), double-muscled INRA 95–sired calves had a lighter slaughter weight (303 vs. 346 kg), but a greater dressing percent (62.3 vs. 58.4%). Limousin (also known as Limousine)–sired calves had a smaller average daily gain (1.26 vs. 1.34 kg/d), and lighter slaughter (314 vs. 346 kg) and carcass weights (182 vs. 201 kg). Last, Simmental-sired calves had a similar growth rate, but lighter carcass weight (177 vs. 201 kg), smaller dressing percentage (55.3 vs. 58.4%), and smaller muscularity scores (3.25 vs. 3.72). In the case of young bulls and heifers fattened on the dairy farm of birth, Belgian Blue–, Piemontese (also known as Piedmontese)-, and Limousin-sired calves performed similarly; the only exception was that Piemontese-sired calves had a greater dressing percentage. Belgian Blue– and Limousin-sired calves performed similarly when fattened by specialized beef producers. In both veal and beef production, the effects of dam breed were less important than sire breed. Considering the entire project, we can conclude that the combined use of sexed semen for purebreeding and conventional beef semen for terminal crossbreeding improves meat production from dairy herds, especially when the sires are double-muscled beef breeds.  相似文献   

9.
The objective of the present study was to conduct a stochastic simulation study on the possible benefits of an application of genomic selection in dairy cattle breeding programs according to a variety of selection schemes. In addition, the heritability of the trait in question, the accuracy of genomic breeding values, and the number of animals to be genotyped were varied. Specifically, the question of genotyping males, females, or both, was addressed. Selection schemes were compared with a young bull breeding program. The main criterion for comparison was the average of true breeding values of selected young males to be used as replacements for artificial insemination bulls. Stochastic simulations were run with 50 repetitions each to generate individuals with phenotypes, breeding values estimated by BLUP, and true breeding values. Genomic breeding values were generated from true breeding values with defined accuracy. Examined scenarios included a group of selection schemes that featured genotyping of parents of future bulls only. Such schemes can be viewed as improvements of young bull programs, and they were found to be competitive with or superior to a classical young bull program. However, a genomic breeding program usually involves at least genotyping young male candidates. A second group of selection schemes reflected this requirement. Scenarios in this group were found to be superior over the young bull program by 1.0 to 1.2 standard deviations of the average true breeding value of young male candidates. Within this group of scenarios, one scheme referred to an ideal situation under which genotypes for male calves were available without limitation. Using the average of true breeding values as the criterion for comparison, this idealistic scenario was competitive with other scenarios only if the reliability of genomic breeding values was larger than 0.50. Conventionally, not all males available will have genotypes, and the 2 most promising scenarios included a preselection step for dams of future bulls. This preselection step can be based on conventional BLUP estimated breeding values for bull dams, because differences with a scheme under which both parents and the resulting male offspring are genotyped were marginal. Genotyping of young male candidates should be the focus of activities of today's breeding organizations.  相似文献   

10.
Differences in Estimated Breeding Values expressed in dollars were compared by simulation of two, 100-cow, closed herds. One herd practiced normal intensity of female selection. The other herd generated various herd replacements by embryo transfer by varying 1) selection rate of embryo transfer dams and 2) numbers of daughters per dam from which embryos were transferred, while varying the merit of mates of embryo transfer dams. Estimated Breeding Value dollars were compounded each generation and regressed to remove age adjustments and added feed and health costs. Beginning values in both herds included a standard deviation of 55 Cow Index dollars, herd average of -23 Cow Index dollars, and a 120 Predicted Difference dollars for mates of dams not embryo transferred. Average merit of all sires used increased $12 per year. Herd calving rate (.70), proportion females (.5), calf loss (.15), and heifer survival rate (.83) were used. Breakeven cost per embryo transfer cow entering the milking herd was computed by Net Present Value analysis using a 10% discount rate over 10 and 20 yr. Breakeven cost or the maximum expense that would allow a 10% return on the expenditure ranged from $135 to $510 per surviving cow, $24 to $125 per transfer, $47 to $178 per pregnancy, and $81 to $357 per female calf born. As the number of replacements resulting from embryo transfer increased, breakeven cost per embryo transfer cow decreased due to diminishing return.  相似文献   

11.
《Journal of dairy science》2019,102(11):9956-9970
The objectives of this study were to investigate bias in genomic predictions for dairy cattle and to find a practical approach to reduce the bias. The simulated data included phenotypes, pedigrees, and genotypes, mimicking a dairy cattle population (i.e., cows with phenotypes and bulls with no phenotypes) and assuming selection by breeding values or no selection. With the simulated data, genomic estimated breeding values (GEBV) were calculated with a single-step genomic BLUP and compared with true breeding values. Phenotypes and genotypes were simulated in 10 generations and in the last 4 generations, respectively. Phenotypes in the last generation were removed to predict breeding values for those individuals using only genomic and pedigree information. Complete pedigrees and incomplete pedigrees with 50% missing dams were created to construct the pedigree-based relationship matrix with and without inbreeding. With missing dams, unknown parent groups (UPG) were assigned in relationship matrices. Regression coefficients (b1) and coefficients of determination (R2) of true breeding values on (G)EBV were calculated to investigate inflation and accuracy in GEBV for genotyped animals, respectively. In addition to the simulation study, 18 linear type traits of US Holsteins were examined. For the 18 type traits, b1 and R2 of GEBV with full data sets on GEBV with partial data sets for young genotyped bulls were calculated. The results from the simulation study indicated inflation in GEBV for genotyped males that were evaluated with only pedigree and genomic information under BLUP selection. However, when UPG for only pedigree-based relationships were included, the inflation was reduced, accuracy was highest, and genetic trends had no bias. For the linear type traits, when UPG for only pedigree-based relationships were included, the results were generally in agreement with those from the simulation study, implying less bias in genetic trends. However, when including no UPG, UPG in pedigree-based relationships, or UPG in genomic relationships, inflation and accuracy in GEBV were similar. The results from the simulation and type traits suggest that UPG must be defined accurately to be estimable and inbreeding should be included in pedigree-based relationships. In dairy cattle, known pedigree information with inbreeding and estimable UPG plays an important role in improving compatibility between pedigree-based and genomic relationship matrices, resulting in more reliable genomic predictions.  相似文献   

12.
Important increases in the rates of inbreeding have recently been observed in dairy cattle populations, and methods have been proposed to address these increases. The aims of this study were to estimate the current level and rates of inbreeding in the UK Holstein population and to investigate the potential of applying optimized selection to manage the rates of inbreeding. Inbreeding coefficients were calculated for the entire UK Holstein population using 1940 as the base year. Rates of inbreeding were obtained for 3 time periods by regressing mean inbreeding coefficients on the year of birth of the animals. The expected average pedigree index and expected inbreeding of offspring using optimized contributions for a given set of selection candidates was compared to the expected pedigree index and inbreeding of offspring for the same set of selection candidates using observed contributions. The rate of inbreeding in the UK Holstein population has increased substantially since 1990 when compared to previous time periods. This increase is most likely due to the large influence of a few related sires on the breed in the mid- to late 1980s. The introduction of the individual animal model in the early 1990s may also have contributed to increased inbreeding. Optimized selection appears to represent a promising selection tool, not only to manage rates of inbreeding, but also to increase genetic gain at the same rate of inbreeding.  相似文献   

13.
Dairy cattle breeding programs in developing countries are constrained by minimal and erratic pedigree and performance recording on cows on commercial farms. Small-sized nucleus breeding programs offer a viable alternative. Deterministic simulations using selection index theory were performed to determine the optimum design for small-sized nucleus schemes for dairy cattle. The nucleus was made up of 197 bulls and 243 cows distributed in 8 non-overlapping age classes. Each year 10 sires and 100 dams were selected to produce the next generation of male and female selection candidates. Conception rates and sex ratio were fixed at 0.90 and 0.50, respectively, translating to 45 male and 45 female candidates joining the nucleus per year. Commercial recorded dams provided information for genetic evaluation of selection candidates (bulls) in the nucleus. Five strategies were defined: nucleus records only [within-nucleus dam performance (DP)], progeny records in addition to nucleus records [progeny testing (PT)], genomic information only [genomic selection (GS)], dam performance records in addition to genomic information (GS+DP), and progeny records in addition to genomic information (GS+PT). Alternative PT, GS, GS+DP, and GS+PT schemes differed in the number of progeny per sire and size of reference population. The maximum number of progeny records per sire was 30, and the maximum size of the reference population was 5,000. Results show that GS schemes had higher responses and lower accuracies compared with other strategies, with the higher response being due to shorter generation intervals. Compared with similar sized progeny-testing schemes, genomic-selection schemes would have lower accuracies but these are offset by higher responses per year, which might provide additional incentive for farmers to participate in recording.  相似文献   

14.
A deterministic model to calculate rates of genetic gain and inbreeding was used to compare a range of breeding scheme designs under genomic selection (GS) for a population of 140,000 cows. For most schemes it was assumed that the reliability of genomic breeding values (GEBV) was 0.6 across 4 pathways of selection. In addition, the effect of varying reliability on the ranking of schemes was also investigated. The schemes considered included intense selection in male pathways and genotyping of 1,000 young bulls (GS-Y). This scheme was extended to include selection in females and to include a “worldwide” scheme similar to GS-Y, but 6 times as large and assuming genotypes were freely exchanged between 6 countries. An additional worldwide scheme was modeled where GEBV were available through international genetic evaluations without exchange of genotypes. Finally, a closed nucleus herd that used juvenile in vitro embryo transfer in heifers was modeled so that the generation interval in female pathways was reduced to 1 or 2 yr. When the breeding schemes were compared using a GEBV reliability of 0.6, the rates of genetic gain were between 59 and 130% greater than the rate of genetic gain achieved in progeny testing. This was mainly through reducing the generation interval and increasing selection intensity. Genomic selection of females resulted in a 50% higher rate of genetic gain compared with restricting GS to young bulls only. The annual rates of inbreeding were, in general, 60% lower than with progeny testing, because more sires of bulls and sires of cows were selected, thus increasing the effective population size. The exception was in nucleus breeding schemes that had very short generation intervals, resulting in higher rates of both gain and inbreeding. It is likely that breeding companies will move rapidly to alter their breeding schemes to make use of genomic selection because benefits to the breeding companies and to the industry are considerable.  相似文献   

15.
The superiority of selection schemes employing information about a known quantitative trait locus (QTL) over conventional schemes is examined for dairy cattle breeding schemes. Stochastic simulation of a dairy cattle population with selection practices, structures, and parameters similar to the US Holstein population was implemented. Additive genetic effects were estimated by an animal model. Two schemes were compared: a QTL-assisted selection scheme in which the genotype of a known QTL was accounted for in the animal model as a fixed factor, and a QTL-free selection scheme in which the QTL was simulated but was not fit separately in the animal model. Under the QTL-assisted selection scheme, all animals in the mixed model were assumed to be genotyped for the QTL. The effect of using QTL information on the genetic response, the frequency of the favorable QTL allele, and the accuracy of evaluation were examined. Moreover, the effect was studied in four distinct paths of selection: active sires, proven young bulls, bull dams, and first-lactation cows. Average superiority values of 4.6, 7.6, 11.7, and 1.1% for genetic response were observed over 16 yr of selection for active sires, young bulls, bull dams, and first-lactation cows, respectively. Frequency of the favorable QTL allele changed faster in bull dams than males, and was the slowest in first-lactation cows. Finally, accuracy of evaluation under the QTL-assisted selection scheme was higher than under the QTL-free selection scheme. Young bulls ofthe QTL-assisted selection scheme on average had 0.049 higher accuracy, and first-lactation cows had on average 0.185 higher accuracy than corresponding animals of the QTL-free selection scheme.  相似文献   

16.
Impact of embryo transfer on rate of genetic gain was examined for a) development of bulls for progeny test, b) development of replacement females, and c) progeny testing of dams of bulls and replacement females. Increased selection intensity by embryo transfer potentially could improve genetic merit of bull dams by 17% when applied to production of sires for progeny test. Additional benefits would arise from increased availability of sisters to such bulls. Genetic merit of dams of replacement females increases more than genetic merit of dams of bulls with embryo transfer. However, current costs of embryo transfer limit its application to production of replacement females when increased yield is the sole source of added income. Increases in generation interval offset improvement in rate of genetic gain per generation from progeny testing females. Therefore, mass selection on own performance and pedigree produce a higher rate of genetic gain per year than progeny testing females. Application of embryo transfer to selection schemes for multiple traits may prove beneficial.  相似文献   

17.
Comparison of alternative dairy (cross-)breeding programs requires full appraisals of all revenues and costs, including beef merit. Few studies exist on carcass characteristics of crossbred dairy progeny originating from dairy herds as well as their dams. The objective of the present study was to quantify, using a national database, the carcass characteristics of young animals and cows differing in their fraction of Jersey. The data set consisted of 117,593 young animals and 42,799 cows. The associations between a combination of sire and dam breed proportion (just animal breed proportion when the dependent variable was on cows) with age at slaughter (just for young animals), carcass weight, conformation, fat score, price per kilogram, and total carcass value were estimated using mixed models that accounted for covariances among herdmates of the same sex slaughtered in close proximity in time; we also accounted for age at slaughter in young animals (which was substituted with carcass weight and carcass fat score when the dependent variable was age at slaughter), animal sex, parity of the cow or dam (where relevant), and temporal effects represented by a year-by-month 2-way interaction. For young animals, the heaviest of the dairy carcasses were from the mating of a Holstein-Friesian dam and a Holstein-Friesian sire (323.34 kg), whereas the lightest carcasses were from the mating of a purebred Jersey dam to a purebred Jersey sire which were 46.31 kg lighter (standard error of the difference = 1.21 kg). The young animal carcass weight of an F1 Holstein-Friesian × Jersey cross was 20.4 to 27.0 kg less than that of a purebred Holstein-Friesian animal. The carcass conformation of a Holstein-Friesian young animal was 26% superior to that of a purebred Jersey, translating to a difference of 0.78 conformation units on a scale of 1 to 15. Purebred Holstein-Friesians produced carcasses with less fat than their purebred Jersey counterparts. The difference in carcass price per kilogram among the alternative sire-dam breed combinations investigated was minimal, although large differences existed among the different breed types for overall carcass value; the carcass value of a Holstein-Friesian animal was 20% greater than that of a Jersey animal. Purebred Jersey animals required, on average, 21 d longer to reach a given carcass weight and fat score relative to a purebred Holstein-Friesian. The difference in age at slaughter between a purebred Holstein-Friesian animal and the mating between a Holstein-Friesian sire with a Jersey dam, and vice versa, was between 7.0 and 8.9 d. A 75.8-kg difference in carcass weight existed between the carcass of a purebred Jersey cow and that of a Holstein-Friesian cow; a 50% Holstein–Friesian-50% Jersey cow had a carcass 42.0 kg lighter than that of a purebred Holstein-Friesian cow. Carcass conformation was superior in purebred Holstein-Friesian compared with purebred Jersey cows. Results from this study represent useful input parameters to populate simulation models of alternative breeding programs on dairy farms, and to help beef farmers evaluate the cost-benefit of rearing, for slaughter, animals differing in Jersey fraction.  相似文献   

18.
A comparison of dairy cattle breeding designs that use genomic selection   总被引:1,自引:0,他引:1  
Different dairy cattle breeding schemes were compared using stochastic simulations, in which the accuracy of the genomic breeding values was dependent on the structure of the breeding scheme, through the availability of new genotyped animals with phenotypic information. Most studies that predict the gain by implementing genomic selection apply a deterministic approach that requires assumptions about the accuracy of the genomic breeding values. The achieved genetic gain, when genomic selection was the only selection method to directly identify elite sires for widespread use and progeny testing was omitted, was compared with using genomic selection for preselection of young bulls for progeny testing and to a conventional progeny test scheme. The rate of inbreeding could be reduced by selecting more sires every year. Selecting 20 sires directly on their genomic breeding values gave a higher genetic gain than any progeny testing scheme, with the same rate of inbreeding as the schemes that used genomic selection for preselection of bulls before progeny testing. The genomic selection breeding schemes could reduce the rate of inbreeding and still increase genetic gain, compared with the conventional breeding scheme. Since progeny testing is expensive, the breeding scheme omitting the progeny test will be the cheapest one. Keeping the progeny test and use of genomic selection for preselection still has some advantages. It gives higher accuracy of breeding values and does not require a complete restructuring of the breeding program. Comparing at the same rate of inbreeding, using genomic selection for elite sire selection only gives a 13% increase in genetic gain, compared with using genomic selection for preselection. One way to reduce the costs of the scheme where genomic selection was used for preselection is to reduce the number of progeny tested bulls. This was here achieved without getting lower genetic gain or a higher rate of inbreeding.  相似文献   

19.
Genetic changes and genetic drift in three small closed dairy cattle populations were examined with a stochastic simulation model. Multiple ovulation and embryo transfer and AI techniques were simulated in three populations, two with 88 breeding females each and one with 352 breeding females. The selection goal was to maximize genetic improvement in milk yield. The reduction in genetic variation due to inbreeding and linkage disequilibrium was accounted for in the simulation. Strict restriction against inbred mating slowed genetic progress significantly in the small population but would not be consequential in the larger population. However, allowing inbred mating in the smaller population caused a rapid accumulation of inbreeding. Linkage disequilibrium was as important as inbreeding in reducing genetic variation. Genetic drift variance was much smaller in the larger population.  相似文献   

20.
Longevity is the economically most important functional trait in cattle populations. However, with an increased productive lifespan, the number of offspring born by older dams increases. A higher maternal age might have negative effects on the performance of offspring. The objective of this study was to investigate the effect of maternal age on production (energy-corrected milk yield [ECM]) and functional traits (fertility; somatic cell score, and functional longevity) in Austrian dual-purpose Simmental cows. Age of dam had a significant effect on ECM yield and longevity. The ECM yield of daughters decreased with age of dam. Although the risk of culling slightly increased with age of dam, it was lowest for daughters of oldest dams. Results for fertility were non-significant, and results for somatic cell scores were inconsistent across parities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号