首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   31篇
  国内免费   4篇
电工技术   14篇
化学工业   33篇
机械仪表   6篇
建筑科学   2篇
矿业工程   3篇
能源动力   41篇
石油天然气   5篇
一般工业技术   27篇
冶金工业   6篇
原子能技术   2篇
自动化技术   4篇
  2024年   2篇
  2023年   10篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有143条查询结果,搜索用时 0 毫秒
1.
为提升电动汽车CO2热泵空调系统的制冷性能,文章构建了中间补气+回热器的跨临界CO2系统,通过仿真研究了气体冷却器出口温度(Tgo)、气体冷却器压力(Pg)、中间补气压力(Pm)、相对补气量(β)、回热器过热度(ΔT)对系统制冷系数(EER)、制冷量(Qe)和压缩机排气温度(Tco)的影响及中间补气对回热器优化能力的提升。研究表明:存在最佳气体冷却器压力和最佳中间补气压力使得EER达到最大值,并得到两者与气体冷却器出口温度的关系式;气体冷却器出口温度上升会使系统性能下降,中间补气量和回热器过热度的增加能提升系统性能,EER提升了15.64%和6.07%,制冷量提升了27.88%和4.78%;回热器过热度的增加会导致压缩机排气温度上升,中间补气可降低压缩机排气温度,当限定压缩机排气温度时,中间补气可使回热器对EER和制冷量的优化能力分别提升了203%和173.87%;相对于基础跨临界CO2系统,文章构建的优化系统在所研究工况内可使系统EER和制冷量分别提升18.38%和35.03%。  相似文献   
2.
创新性提出了一种燃料驱动无电热泵系统(NEHP)的热泵新技术,NEHP使用一套系统解决了夏季供冷、冬季供暖、生活热水及一定量生活用电,是一种可冷热电多联供的分布式能源系统。本文从原理及设计思路上对NEHP新技术进行了具体说明,对NEHP技术应用的节能性进行了模拟计算,并对运行经济性作了全面分析。NEHP技术适宜应用于缺电和无电地区,具有电热泵(EHP)无法比拟的适用性优势,也适用于燃气与电力均较为充裕的地区,具有广阔的应用场景。对于使用燃气的NEHP-G系统,若气电比rge小于某一数值,则在供热或供冷方面NEHP-G将比EHP具有更低的运行费用,其中额定制热时该值为4.17,额定制冷回收与不回收余热时该值分别为5.62和3.06。以重庆地区2021年商业气价与电价为例,NEHP-G在制热季可节省费用42.17%~47.49%,在制冷季回收与不回收余热可分别节省费用48.22%与32.26%。  相似文献   
3.
燃气热泵(GHP)是一种高效的天然气分布式能源系统,可通过回收发动机余热而显著改善空气源热泵在冬季低温制热量大幅度衰减的不足。本文在自行设计并搭建的使用R410A制冷剂开启式涡旋式压缩机的GHP实验平台上,针对额定制热和超低温制热两种环境温度Tamb(7℃和-15℃),研究了不同制热运行方式(mode-1~mode-4)对GHP系统制热性能参数的影响。结果表明,相比不进行余热回收的制热模式(mode-1),进行余热回收的制热模式(mode-2~mode-4)可明显提升系统的制热性能,mode-4是一种更优的制热运行模式。在mode-4下,当环境温度为7℃与-15℃时,一次能源利用率分别为1.552和0.983,回收的余热量占总余热量的百分比(Rrec,res)分别为64.15%和50.63%,回收的余热量占总制热量的百分比(Rrec,h)分别为28.97%和36.58%,系统的余热回收效果优良。相比于额定制热下的Rrec,res与Rrec,h,超低温制热下回收的余热量占发动机总...  相似文献   
4.
水合物浆和冰浆高密度潜热输送研究进展   总被引:1,自引:1,他引:1       下载免费PDF全文
概括了高密度潜热输送介质——水合物浆和冰浆的研究进展。对比了水合物浆和冰浆的生成方法、生成条件、输送特性等,指出了水合物浆作潜热输送有更大的应用潜力。  相似文献   
5.
陈永珍  黎华玲  宋文吉  冯自平 《化工学报》2018,69(12):5316-5325
热处理废旧电池正极片除去黏结剂后得到回收材料,在对回收材料元素定量分析的基础上,通过添加不同比例的Li、Fe、P源进行高温固相再生反应获得再生材料,研究杂质对再生材料的影响并优化再生反应原料比例。实验结果表明,再生反应过程中生成了Fe2P杂质,该杂质衍射特征峰随着添加的Li、Fe、P源比例增加逐渐减弱;过多Li、Fe、P源添加时,导致再生材料结构致密性严重,Fe2P杂质存在及材料结构过于致密,均降低了再生材料的容量性能。回收材料、化学计量比再生材料、过量元素源(1:1)再生材料首次放电容量分别为103.4、115.8和134.0 mA·h·g-1,再生反应后分别提高了11.99%、29.59%。上述三种材料50次循环后放电容量分别为100.9、108.0和115.3 mA·h·g-1。  相似文献   
6.
胡亚飞  吕杰  韩涛  宋文吉  冯自平 《化工进展》2022,41(7):3553-3563
燃气热泵(GHP)是一种先进的低碳节能清洁供暖技术。针对当前GHP技术研究中普遍使用的R134a冷媒制热环境温度下限偏高及活塞式压缩机能效偏低等局限,本文创新性地搭建了基于使用R410A冷媒涡旋式压缩机的高能效GHP实验平台,在实验台上进行了不同出水温度(tw,out)、发动机转速(Neng)、进水流量(Gw)及是否余热回收下的高温制热特性研究,得到了制热量(Qh)、耗气功率(Pgas)、压机功率(Pcomp)、一次能源利用率(PER)及性能系数(COP)的变化规律,并对关键性能参数进行了误差分析。结果表明,tw,out由41℃增至50℃时,Qh、PER和COP分别减小了3.12%、13.17%和18.92%,PER下降的幅度明显小于COP;Neng从1200r/min增至1800r/min时,在50℃出水下Qh、Pgas与Pcomp  相似文献   
7.
螺旋管内单相液体紊流脉动流动传热   总被引:1,自引:2,他引:1       下载免费PDF全文
郭烈锦  冯自平 《化工学报》2000,51(2):159-164
以水为工质对螺旋管内单相液体充分发展紊流脉动传热特性进行了实验研究 ,发现了紊流脉动传热系数与流量脉动相位间的反相关系 ,引进了两个新的准则数 :脉动频率数W0 和脉动振幅率Ap,对紊流脉动传热规律进行了分析讨论 ,并根据紊流脉动传热参数的瞬态变化规律 ,对脉动过程中的管内二次流特征和变化作了详细讨论和分析 .  相似文献   
8.
相变流体由于在相变前后都能保持流动状态,可以像普通流体一样通过泵和管道系统输送.由于存在固-液相变,相变流体储能密度及输送密度远高于相同温差下的水,因此可以使循环流量大幅降低,从而降低循环能耗,实现节能.综述了相变乳状液、相变微胶囊、水合物浆在蓄能及潜热输送方面的研究进展,并对其发展前景进行了展望.  相似文献   
9.
不同倾角放置螺旋管汽波两相摩擦阻力特性   总被引:2,自引:0,他引:2       下载免费PDF全文
在宽广的参数范围内试验研究了螺旋管在不同倾角放置时的单相及汽液两相摩擦阻力特性,获得了螺旋管放置方向及各主要系统参数对汽液两相摩擦阻力特性的影响规律。在对试验结果及前人研究结果进行详细分析的基础上,获得了第一个能适用于不同倾角放置螺旋管的单相及汽液两相摩擦阻力计算式,从而为汽液两相摩擦阻力及螺旋管的进一步研究和应用提供了依据。  相似文献   
10.
孔板气泡法缩短天然气水合物形成诱导期   总被引:1,自引:0,他引:1  
为缩短天然气水合物形成诱导期,基于气液两相流原理和天然气水合物形成条件,提出从高压反应釜底部进气,利用孔板鼓泡来增大气液接触面积,增强气体对液体的扰动,从而缩短天然气水合物形成诱导期的动态方法。据此,建立带有机玻璃视窗的高压反应釜实验系统,在浓度为280 ppm十二烷基硫酸钠(SDS)促进剂水溶液中进行天然气水合物生成动态实验(反应釜底部进气)和静态实验(反应釜顶部进气)。结果表明,使用此法,一定压力(P=4.15 MPa)和温度(T=274.05 K)下,相比于静态实验(P=4.30 MPa,T=273.95 K),天然气水合物形成诱导期可缩短约2/3,尽管其它条件相同时,理论上后者的温度和压力更有利于天然气水合物的形成;此外,实验结果还表明,一定反应条件下,天然气水合物形成诱导期受通气状况的影响,实验中,通过控制气流速率,一方面可控制气泡直径(气泡直径越小,气液接触面积越大);另一方面可延长通气时间(增加了气体对液体的持续扰动)。这二者都有助于缩短天然气水合物形成诱导期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号