排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
快速准确的在线静态电压稳定评估是规模化互联电网安全稳定运行的重要保障。针对传统神经网络学习模型调参繁杂、训练时间长、样本需求数量庞大等缺点,提出了一种基于约束投票极限学习机(constrainedvoting extreme learning machine,CV-ELM)的在线静态电压稳定评估模型。CV-ELM基于类间样本差值构建差向量集计算输入层对隐藏层的权值及隐藏层节点偏置项,并引入多数投票机制,通过集成学习的方式进行分类决策。此外,CVELM可自适应确定网络参数,在分类准确率、鲁棒性及泛化能力方面均优于传统的ELM。最后,基于新英格兰10机39节点系统的算例仿真结果证明了所提模型的有效性。 相似文献
2.
由于实际电力系统中暂态失稳样本稀少,基于数据驱动的暂态稳定评估方法面临训练样本类别分布失衡问题,严重影响暂态稳定评估结果的可靠性。针对此问题,提出了一种基于MAHAKIL过采样和BCLM的鲁棒暂态稳定评估方法。首先,通过MAHAKIL过采样改善原始样本集的类别分布;然后,基于BCLM构建电力系统鲁棒暂态稳定评估模型。在新英格兰10机39节点系统上的测试结果表明,所提方法能够显著降低原始样本类别失衡的影响,并对数据缺失和数据噪声具有较强鲁棒性。 相似文献
3.
为了实现无人机在无GPS的矿井环境下进行自主飞行,达到无人机的精准定位,提出了基于Rao-Blackwellized粒子滤波器的快速同步定位与地图创建(fast simultaneous location and mapping,Fast SLAM)算法。首先设计了一种适用于矿井环境下的人工路标,建立起了无人机的SLAM算法数学模型,接着提出一种改进算法—PSOFast SLAM算法提高准确性,对无人机的位姿和路标位置进行估计,实现无人机的精准定位和地图绘制。最后对进行仿真实验,仿真结果证明PSOFast SLAM算法有效改善了Fast SLAM算法粒子退化的问题,提高了井下无人机定位精度。 相似文献
4.
为解决量测数据缺失时电力系统暂态稳定评估模型泛化能力不足的问题,基于多向循环神经网络和XGBoost算法,提出一种针对数据缺失的电力系统暂态稳定评估方法。首先使用多向循环神经网络修复缺失数据;然后采用完整的数据集对XGBoost模型进行训练;最后基于SHAP理论量化不同输入特征对模型输出结果的影响。此外,还提出了一种模型更新机制,在系统工况发生改变时对模型进行持续更新。在新英格兰10机39节点系统上仿真结果表明,所提方法相较于传统方法具有更好的数据修复能力,能显著提高暂态稳定评估性能。 相似文献
5.
1