排序方式: 共有1条查询结果,搜索用时 8 毫秒
1
1.
针对光伏电站光伏板热斑故障难以检测的问题,结合无人机巡检技术,提出一种基于深度卷积神经网络的光伏板热斑快速检测方法。首先设计了光伏板识别模型,将Yolov4主干特征提取网络替换成轻量级网络MobileNetV2,并将PAnet网络中标准3×3卷积替换为深度可分离卷积,实现了将光伏板快速从红外图像中识别出来。为快速识别热斑并解决光伏板反光噪声问题,将MobileNetV2网络引入DeeplabV3+模型中,改进由于下采样造成的目标缺失,并将交叉熵损失函数修改为Dice损失函数来进一步提高分割精度。试验结果表明,该方法能够准确识别光伏板热斑,光伏板识别准确率为99. 56%,检测速度为22. 1帧/秒。光伏板识别后的热斑分割准确度达到95. 99%,交并比mIou达到85. 58,检测速度为24. 5帧/秒,该方法能够满足光伏板故障检测的需要。 相似文献
1