排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中添加白噪声,使用NACEMD将其按照不同波动尺度逐级分解,得到不同时频特性的分量,然后利用Elman神经网络对各分量建立预测模型,以各分量的不同时频特性为基准对预测结果进行叠加,得到风功率预测值。实例分析表明,提出的组合预测法既可进一步减轻现有方法中存在的模态混叠现象,具备较高的预测精度。研究成果可为风功率预测提供参考。 相似文献
2.
3.
4.
研究多个风电场的联合概率密度,对于风电大规模并网及电力系统运行控制具有重要意义。该文提出一种基于自适应多变量非参数核密度估计的多风电场联合概率密度建模方法。首先以可变带宽代替固定带宽建立一种自适应的多变量非参数核密度估计模型,然后针对模型带宽选择问题,构造了一种以欧氏距离和最大距离为拟合性指标的带宽优化模型,最后利用序优化算法对其进行求解。实际算例仿真结果表明,该文方法不仅较传统基于copula函数的参数估计方法具有更高的精度和适用性,而且还较好地解决了传统多变量非参数核密度估计方法的局部适应性问题。 相似文献
1