排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
针对支持向量机(support vector machine, SVM)的惩罚因子、核函数参数选择困难和天鹰优化(aquila optimizer, AO)算法在寻优时容易陷入局部最优解的问题,利用改进的天鹰优化(improved aquila optimizer, IAO)算法对SVM的惩罚因子和核函数参数进行寻优,构建IAO-SVM分类器,利用变分模态分解(variational mode decomposition, VMD)提取电压暂降源信号三相电压的特征向量,并进行归一化处理之后输入到构造好的IAO-SVM分类器中对样本进行训练与识别,并与K近邻、极限学习机、SVM和AO-SVM这4种分类器进行对比。仿真结果表明,在对8种电压暂降源信号分别加入0 dB、10 dB、20 dB、30 dB、40 dB、50 dB和60 dB的高斯白噪声情况下,IAO-SVM分类器识别的准确率分别为99.5%、94%、99.25%、100%、99.25%、98.5%和97.25%,其识别准确率最高,验证了在对信号加入不同的高斯白噪声时,IAO-SVM分类器均具有较高的识别准确率和抗噪声能力,有助... 相似文献
3.
4.
5.
为了提高短期光伏发电功率预测的精度,提出了一种基于白冠鸡优化算法(COOT)优化支持向量机(SVM)的短期光伏发电功率预测模型。首先,分别选取某光伏电站在2017年4月和7月的前21天数据进行仿真分析,计算光伏输出功率和每一个气象因素之间的皮尔逊相关系数;然后,依据皮尔逊相关系数选择太阳总辐射强度、太阳散射辐射强度、太阳直射辐射强度、组件温度和环境温度5个气象因素作为预测模型的输入数据,光伏电站的发电功率作为输出数据。通过与BP和SVM预测模型进行仿真对比可知,对于4月和7月的数据来说,COOT-SVM预测模型的均方根误差、均方误差和平均绝对误差均比BP和SVM预测模型小。因此,所提COOT-SVM预测模型可有效提高短期光伏发电功率的预测精度,具有较高的工程应用价值。 相似文献
1