排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
由于遥感场景图像类内差距大即同一类别图像的特性信息相差较大,仅仅依靠特性信息分类的准确率不高,而现有遥感场景图像分类方法忽视了同一类别所具有的相同的共性信息也可以辅助图像识别,对此本文提出一种基于共性与特性信息融合的遥感场景图像分类方法。首先,图像通过卷积网络较浅层与深层得到的简单特征图与复杂特征图相叠加,可认为是此图像注意力集中的特征图,提取此特征图的手工特征LBP作为共性信息。之后与卷积网络提取的特性信息融合并进行分类。本文使用经贝叶斯优化优化超参数的SVM分类器,使其性能达到最佳来消除分类器对实验的影响。在两个数据集UC Merced和AID上的实验,验证其分类精度分别达到了98.80%和96.06%,表明该方法能有效地提升遥感场景图像准确率。在国防,城市规划,地质勘查等领域有重要意义。 相似文献
1