10.
Comparative experiments are performed in friction stir welding (FSW) of dissimilar Al/Mg alloys with and without assistance of ultrasonic vibration. Metallographic characterization of the welds at transverse cross sections reveals that ultrasonic vibration induces differences in plastic material flow in two conditions. In FSW, the plastic material in the peripheral area of shoulder-affected zone (SAZ) tends to flow downward because of the weakening of the driving force of the shoulder, and a plastic material insulation layer is formed at the SAZ edge. When ultrasonic vibration is exerted, the stirred zone is divided into the inner and outer shear layers, the downward material flow trend of the inner shear layer disappears and tends to flow upward, and the onion-ring structure caused by the swirl motion is avoided in the pin-affected zone. By improving the flow behavior of plastic materials in the stirred zone, ultrasonic vibration reduces the heat generation, accelerates the heat dissipation in nugget zone and changes the thermal cycles, thus inhibiting the formation of intermetallic compound layers.
相似文献