首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
综合类   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
随着数据的爆炸式增长,聚类研究作为大数据的核心问题之一,正面临计算复杂度高和计算能力不足等诸多问题。提出了一种基于Hadoop的分布式改进K-means算法,该算法通过引入Canopy算法初始化K-means算法的聚类中心,克服传统K-means算法因初始中心点的不确定性,易陷入局部最优解的问题。本算法在Canopy(罩盖)中完成K-means聚类,并在Canopy间完成簇的合并,聚类效果稳定,迭代次数少。同时,结合MapReduce分布式计算模型,给出改进后算法的并行化设计方法和策略,进一步通过改进相似度度量方法,将该方法用于文本聚类中。实验结果证明该算法具有良好的准确率和扩展性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号