首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 4 毫秒
1
1.
为了提高短期负荷预测的精度,综合分析了气象、日期等因素,并计算各特征与被预测负荷之间的相关系数,根据各特征与负荷之间的相关性,提出了一种将预测日前几天的负荷作为新特征进行负荷预测的方法。为了验证算法的普适性,采用支持向量回归、随机森林和梯度提升决策树3种机器学习算法,在2016-2018年我国北方某地的真实电力负荷和欧洲智能技术网络(EUNITE)竞赛负荷预测样本数据两个数据集上进行验证,并将预测结果与采用传统特征的算法进行了对比。预测结果显示,相较于传统方法,采用新特征后的短期负荷预测具有更高的预测精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号