排序方式: 共有1条查询结果,搜索用时 4 毫秒
1
1.
为了提高短期负荷预测的精度,综合分析了气象、日期等因素,并计算各特征与被预测负荷之间的相关系数,根据各特征与负荷之间的相关性,提出了一种将预测日前几天的负荷作为新特征进行负荷预测的方法。为了验证算法的普适性,采用支持向量回归、随机森林和梯度提升决策树3种机器学习算法,在2016-2018年我国北方某地的真实电力负荷和欧洲智能技术网络(EUNITE)竞赛负荷预测样本数据两个数据集上进行验证,并将预测结果与采用传统特征的算法进行了对比。预测结果显示,相较于传统方法,采用新特征后的短期负荷预测具有更高的预测精度。 相似文献
1