首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   2篇
无线电   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
为解决战场通信智能抗干扰决策问题,设计了一种基于深度强化学习的通信抗干扰决策方法.该方法在DQN算法架构下引入经验回放和基于爬山策略(PHC)的动态ε机制,提出动态ε-DQN智能决策算法,该算法能够根据决策网络状态更优地选择ε值,提高收敛速度和决策成功率.在决策过程中,对所有通信频率是否存在干扰信号进行检测,将结果作为...  相似文献   
2.
针对传统干扰资源分配算法在处理非线性组合优化问题时需要较完备的先验信息,同时决策维度小,无法满足现代通信对抗要求的问题,该文提出一种融合噪声网络的深度强化学习通信干扰资源分配算法(FNNDRL)。借鉴噪声网络的思想,该算法设计了孪生噪声评估网络,在避免Q值高估的基础上,通过提升评估网络的随机性,保证了训练过程的探索性;基于概率熵的物理意义,设计了基于策略分布熵改进的策略网络损失函数,在最大化累计奖励的同时最大化策略分布熵,避免策略优化过程中收敛到局部最优。仿真结果表明,该算法在解决干扰资源分配问题时优于所对比的平均分配和强化学习方法,同时算法稳定性较高,对高维决策空间适应性强。  相似文献   
3.
为进一步提升基于值函数强化学习的智能干扰决策算法的收敛速度,增强战场决策的有效性,设计了一种融合有效方差置信上界思想的改进Q学习智能通信干扰决策算法.该算法在Q学习算法的框架基础上,利用有效干扰动作的价值方差设置置信区间,从干扰动作空间中剔除置信度较低的干扰动作,减少干扰方在未知环境中不必要的探索成本,加快其在干扰动作...  相似文献   
4.
针对战场通信对抗智能决策问题,该文基于整体对抗思想提出一种基于自举专家轨迹分层强化学习的干扰资源分配决策算法(BHJM),算法针对跳频干扰决策难题,按照频点分布划分干扰频段,再基于分层强化学习模型分级决策干扰频段和干扰带宽,最后利用基于自举专家轨迹的经验回放机制采样并训练优化算法,使算法能够在现有干扰资源特别是干扰资源不足的条件下,优先干扰最具威胁目标,获得最优干扰效果同时减少总的干扰带宽。仿真结果表明,算法较现有资源分配决策算法节约25%干扰站资源,减少15%干扰带宽,具有较大实用价值。  相似文献   
5.
针对战场通信对抗智能决策问题,该文基于整体对抗思想提出一种基于自举专家轨迹分层强化学习的干扰资源分配决策算法(BHJM),算法针对跳频干扰决策难题,按照频点分布划分干扰频段,再基于分层强化学习模型分级决策干扰频段和干扰带宽,最后利用基于自举专家轨迹的经验回放机制采样并训练优化算法,使算法能够在现有干扰资源特别是干扰资源不足的条件下,优先干扰最具威胁目标,获得最优干扰效果同时减少总的干扰带宽.仿真结果表明,算法较现有资源分配决策算法节约25%干扰站资源,减少15%干扰带宽,具有较大实用价值.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号