排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
3.
本文提出一种基于半监督主动学习的算法,用于解决在建立动态贝叶斯网络(DBN)分类模型时遇到的难以获得大量带有类标注的样本数据集的问题.半监督学习可以有效利用未标注样本数据来学习DBN分类模型,但是在迭代过程中易于加入错误的样本分类信息,并因而影响模型的准确性.在半监督学习中借鉴主动学习,可以自主选择有用的未标注样本来请求用户标注.把这些样本加入训练集之后,能够最大程度提高半监督学习对未标注样本分类的准确性.实验结果表明,该算法能够显著提高DBN学习器的效率和性能,并快速收敛于预定的分类精度. 相似文献
4.
对于建立动态贝叶斯网络(DBN)分类模型时,带有类标注样本数据集获得困难的问题,提出一种基于EM和分类损失的半监督主动DBN学习算法.半监督学习中的EM算法可以有效利用未标注样本数据来学习DBN分类模型,但是由于迭代过程中易于加入错误的样本分类信息而影响模型的准确性.基于分类损失的主动学习借鉴到EM学习中,可以自主选择有用的未标注样本来请求用户标注,当把这些样本加入训练集后能够最大程度减少模型对未标注样本分类的不确定性.实验表明,该算法能够显著提高DBN学习器的效率和性能,并快速收敛于预定的分类精度. 相似文献
5.
提出了基于Plugin技术的可扩展的网络测量平台,和现有的测量平台相比,该平台具有即插即用性、可扩展性和独立性。给出了该测量平台的体系结构和关键组件的系统设计及Petri网模型,以及网络延迟测量插件和基于Netfilter的被动测量插件实例。 相似文献
6.
7.
在压缩感知过程中,观测矩阵在信号采样及重构中具有重要作用,构造易于硬件实现、结构简单且占内存较小的观测矩阵是压缩感知理论能否实际应用的关键问题之一。提出两种易于硬件实现的观测矩阵,即顺序部分哈达玛观测矩阵和循环伪随机观测矩阵,其中循环伪随机观测矩阵可分为循环m序列和循环gold序列,并证明了伪随机序列所构造的观测矩阵满足有限等距准则。为验证上述两种观测矩阵性能,对二维图像信号进行仿真,结果表明,在较低的采样率下顺序部分哈达玛观测矩阵的重构效果最优,但是采样信号长度必须是2的k次幂;循环伪随机观测矩阵的重构效果虽然弱于顺序部分哈达玛观测矩阵,但是明显优于高斯随机观测矩阵,克服了顺序部分哈达玛矩阵观测信号必须是2的k次幂的限制。提出的两种观测矩阵易于硬件实现,避免了随机矩阵的不确定性且克服了随机矩阵浪费存储资源的缺陷,具有良好的实际应用价值。 相似文献
8.
9.
10.
意境的营造是中国园林艺术表现的最高境界,是现代园林发展的必然趋势。通过对中国古典园林中意境营造的研究与探析,结合现代城市发展特点,探讨意境营造在现代园林设计中的含义、特点和手法,希望可以对今后现代园林设计的发展有所帮助。 相似文献