排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
秦岭凤太矿田金矿成矿特征及成因分析 总被引:1,自引:0,他引:1
以较详细的资料论述了秦岭凤太矿田八封庙金矿和双王金矿床的主要成矿特征,并对比了两者之间包括成矿地质环境,成矿方式,成矿物质来源和成矿流体等方面的差异。研究表明造成这些差异与两矿主档所处的地质环境有关。综合上述特征指出本区泥盆系中的金矿具热水沉积,后期构造-岩浆热液多次叠加改造的特点。 相似文献
2.
文章通过对个旧锡矿西区贾沙二长花岗岩和东区老卡花岗岩地球化学特征的对比研究分析表明,前者Al2O3、TFe、K2O、Na2O的含量略高,后者SiO2、TiO2、CaO的含量略高;两者均具富集Cs、Rb、Th、U、Pb而亏损Ba、Sr等大离子亲石元素的特征,高场强元素分异明显;前者稀土总量、轻稀土含量和δEu值均高于后者,后者重稀土的含量明显高于前者。从个旧地区花岗岩的形成环境来看,该区花岗岩从西到东,从北到南具有从燕山期碰撞造山晚期逐渐过渡到碰撞造山期后的演化趋势,暗示岩浆期后气成成矿流体和盆地流体最终在个旧东区南部集中,成矿可能具有一定的方向性,该区可能为今后的重点找矿区域。 相似文献
3.
老挝地质矿产资源及开发概况 总被引:1,自引:0,他引:1
老挝位于我国“三江”成矿带的南延部分,矿产资源丰富。目前已发现有金、铜、铁、铝土矿、钾盐、锡、铅锌、煤等20余种矿产。从老挝主要矿产产出特点可以看出,其成矿时代主要集中在海西—印支期和喜山期。海西—印支成矿期集中了老挝主要铁、有色金属和稀有贵金属矿产,而喜山成矿期集中了老挝主要非金属岩盐、钾盐、石膏、宝石以及部分砂金和砂锡。矿床类型主要为热液型、夕卡岩型、沉积型、砂矿型和风化淋滤型。按照地质背景及岩浆—构造—矿产分布特征可划分为:(1)景洪—会晒成矿带;(2)丰沙里—帕府成矿带;(3)琅勃拉邦—黎府成矿带;(4)桑怒成矿带;(5)川圹—长山多金属成矿带;(6)万象—昆嵩成矿带;(7)孟高—班敦成矿带等7个成矿区带。其中川圹—长山成矿带为老挝最重要的矿产集中区。老挝目前已开发的矿产资源主要有铜、金、锡、煤等,从现有区域成矿特征及矿点分布来看,老挝南部的阿速波省等地区可能为未来最有前景的金矿找矿地区。 相似文献
4.
5.
6.
7.
新疆乌恰地区地处塔里木盆地与西南天山和昆仑山的交汇处,经历了从中元古代到第四纪较为完整的地层沉积作用,印支期、燕山期和喜山期等强烈的碰撞造山作用及长期的风蚀作用。该区在上述地质作用的共同作用下形成了多种奇特的地形地貌和构造奇观,同时该区特殊的地理气候条件也造就了多种天然经济作物与多种野生动物和谐共存的生态环境。笔者建议当地以地质公园建设为先导,改善基础道路条件,兴建河道水利设施,扩大黑枸杞、甘草、锁阳、沙棘等经济作物种植面积,通过水土保护进一步提高和改善当地生态环境,通过创建“高山有机羊肉”品牌,带动当地畜牧业从数量向高质量发展,逐步形成地质公园旅游与经济作物和畜牧业一体化发展,进而实现该地区的精准脱贫。 相似文献
8.
9.
通常认为钢铁产业和铝产业同属资源类密切相关的两个产业,两者具有极强的相似性。近年铁矿石价格持续上涨,对我国钢铁产业造成重大冲击,引发各界高度关注,而铝土矿的价格波动幅度与铁矿石完全不同。本文在对钢铁和铝产业进行产业组织学对比研究基础上,提出了产业自驱力概念。研究认为:我国钢铁产业和铝产业经过几十年的发展,已经形成了不同的全程产业价值链和市场消费结构,由铝产业中获得的启示是钢铁产业中的超大型国有企业在"二元产业组织结构"中应当积极充当龙头企业,构建完整的产业链,在产业链中不断向上游和下游拓展,为整个行业发挥"稳定器"作用;钢铁产业应将矿山企业和钢铁消费端(铁路建设、房地产、汽车、与钢铁有关的制造业等)纳入钢铁全程产业价值链之内,重塑新空间区位从局部到区域进一步发展,提升我国企业在铁矿石市场定价的话语权,促进钢铁产业自驱力发展和建设。 相似文献
10.
The important Mesozoic-Cenozoic glutenite-type Cu-Pb-Zn-U metallogenic belts are located at the western of Tarim Basin. The large-size Sareke glutenite-type Cu deposit and Wulagen Pb-Zn deposit are in the development period. They still have high potential exploration; however, the metallogenic mechanism is not clear, so that it is difficult for metallogenic prediction and prospecting. The tectonic and geochemical lithofacies show that the basin system including foreland, intermountain and hinterland basins around Southwest Tianshan orogenic belt, has different controls on glutenite-type Cu, Pb-Zn and U deposits. Firstly, the Mesozoic intermontane pull-apart graben basin in Sarekebayi, which is a secondary basin attached to Tuoyun Mesozoic-Cenozoic hinterland basin, is located at the northern of Southwest Tianshan orogenic belt. The Sareke glutenite-type Cu deposit is hosted by amaranthine irony conglomerate in the upper part of the Upper Jurassic Kuzigongsu Formation in this basin. Secondly, Wulagen glutenite-type Pb-Zn deposit is hosted between the upper part of the Lower Cretaceous Kezilesu Group and the bottom of Palaeogene located at the foreland basin of the southern part of Southwest Tianshan orogenic belt. However, Bashibulake large-size glutenite-type U deposit is hosted in the Cretaceous Kezilesu Group of Jiashi foreland basin. Finally, the glutenite-type Cu deposit is hosted in the Oligocene-Miocene and the top of the Palaeogene in the foreland basin system. Tectonic petrography features identifying the hydrocarbon-rich basin fluid include bituminization alteration, bituminization-discolorous alteration, and multiple coupling patterns between cataclastic lithification and bituminization alteration. Nevertheless, the geochemical petrography features include the rich total organic carbon (TOC), and the hydrocarbon-bearing salt-water, gas-liquid-gas/liquid hydrocarbon, light oil and asphalt from organic matter inclusions in the mineral inclusions, and the ore-forming fluids with low and middle salinities, and the orebody of Cu-Ag-Mo intergrowth, and the oxidized facies Cu, sulfured facies Cu and Mo sulfides. Therefore, the metallogenic mechanism of glutenite-type Cu-Pb-Zn-U deposits is clear. Firstly, the hydrocarbon source rocks have given off the hydrocarbon feeders by the sny-faults after tectonic inversion from the strike-slip sag to compressional deformation. Secondly, the tectonic lithofacies zones, including tectonic inversion zones, regional uncomformity, detachment tectonic belts, conglomerates with high porosity and permeability, are the tectonic tunnels for the large-scale migration of hydrocarbon-rich basin fluid. Thirdly, the argillaceous siltstones and gypsum-bearing mudstones from the conglomerates with high porosity and permeability are the signs of tectonic petrography for lithostratigraphic traps. Finally, large-scale hydrocarbon-rich basin fluid and Cu-bearing amaranthine irony conglomerate (oxidized Cu) have multiple-phase fluids and multiple-coupling structure, and maybe the mechanism for the large-scale enrichment mineralization of glutenite-type Cu deposit; the mineralization of brine with lower temperature superimposed by hydrocarbon-rich basin fluid maybe the mechanism for the enrichment mineralization of glutenite-type Pb-Zn deposit; the multiple mixing of hydrocarbon-rich basin fluid and the reduction of oxidized U maybe the mechanism for the enrichment mineralization of glutenite-type U deposit. 相似文献