排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
2.
厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性 总被引:2,自引:0,他引:2
考察了厌氧流化床床层膨胀高度对电池不同阴极位置(阴极1, 2, 3分别位于分布板上方150, 250, 350 mm)产电性能的影响. 膨胀高度低于170 mm时,电池功率随阴极位置沿轴向高度增加而减小,同一流速下,阴极1的最大电极输出功率最大,为347.1 mW/m2. 膨胀高度在170~270 mm时,同一流速下,阴极2的最大产电功率高于阴极1和阴极3,当流速为8.35 mm/s 时,达361.0 mW/m2. 膨胀高度在400 mm以下,同一流速下3处阴极的最大产电功率均降低,阴极3最大产电功率降低幅度较小,为297.5 mW/m2,电池功率随阴极位置沿轴向高度增加而增大. 该结果是流速对阳极室内传质及电子传递效率、流速对微生物膜生长双重影响的结果. 相似文献
3.
5.
以99.99% 高纯铝板为阳极原料,采用电化学方法制备氧化铝前体氢氧化铝,讨论分析了氢氧化铝的焙烧温度、保温时间对制备高纯超细氧化铝的影响,考察了不同电流密度放电对氧化铝形貌和粒度的影响。结果表明:在70 mA·cm-2的较高电流密度下铝/空气电池放电过程可得到平均粒度为268 nm的氢氧化铝;制备的氢氧化铝经洗涤,在1400℃焙烧,保温3 h,可得到平均粒度为200 nm,形貌为近似球状的99.99% 的超细氧化铝粉体;而低电流密度所得氧化铝颗粒团聚严重。主要原因是高电流密度使放电过程中产生的氢氧化铝晶体的介稳区宽度变窄所致。 相似文献
6.
讨论了纳米TiO2在线型低密度聚乙烯(LLDPE),低密度聚乙烯(LDPE)复合体系中的分散和体系流变行为,研究了复合薄膜的光学性能。结果表明,以高流动性LDPE为基体的纳米TiO2母料,加入LLDPE,LDPE体系中后。复合体系的表观粘度有所提高。但拉伸粘度显著下降。纳米TiO2母料在LLDPE/LDPE复合体系中具有良好的分散性,复合薄膜中的纳米TiO2为一次粒子。纳米TiO2起到了异相成核剂的作用。球晶的粒子得到细化。在本研究的纳米填充范围内(质量分数不大于1.0%),复合薄膜的透光度基本不变。雾度发生了较大幅度上升,复合薄膜在紫外光区域的吸收显著增强。 相似文献
7.
以硅烷偶联剂为原料制备出3种加成型液体硅橡胶(ALSR)增黏剂,对比考察了这三种增黏剂对塑料及金属基材黏结效果和力学性能的影响。结果发现,含环氧基或含丙烯酰氧基的单一基团增黏剂对ALSR有一定的增黏作用,而由这两种基团制成的复合型增黏剂具有更加优良的黏结效果。三种增黏剂均可以促进ALSR的硫化,且在一定程度上提高了硫化胶的力学性能。当复合型增黏剂用量为0.8份(质量)时,硅橡胶与铝材之间的剥离强度及硫化胶的拉伸强度分别达到4.3 kN/m和5.23 MPa,与未添加增黏剂的硅橡胶相比,剥离强度提高了约40倍。复合型增黏剂对ALSR的综合改善效果要优于单一极性基团增黏剂。 相似文献
8.
9.
采用热重分析法考察小球藻粉的热解特性,以HZSM-5、HY分子筛为催化剂,对小球藻粉直接热解和催化热解后生物油的化学组成进行对比分析,研究2种分子筛催化剂对催化热解的影响。结果表明,小球藻粉的热解温度为160~600℃;小球藻粉加入HZSM-5分子筛催化剂催化热解后,十六酸及含氮化合物的含量大幅降低,烃类物质的含量提高,含有较多甲苯、二甲苯等芳香烃;经HY分子筛催化热解后,十六酸含量降低,含氮化合物的含量大幅提高,形成大量的萘等多环芳烃;HZSM-5分子筛具有较好的催化脱氧、择形芳构化功能,HY分子筛择形性较差,导致多环芳烃及含氮化合物的含量提高。 相似文献
10.
研究了应用锥形量热仪测量填充聚合物复合材料燃烧的热释放速率时。填料的分解热效应对测量结果的影响.结果表明,若不对锥形量热仪所测得的结果进行校正,则对强分解吸热的填料,测量结果偏高.定量研究表明,对氢氧化铝和氢氧化镁填料,当氢氧化铝填料的质量分率为80%时.基于PP、PM.MA和PVC的复合材料的燃烧热分别减少了11.1%、19.3%和29.2%;当氢氧化镁填料的质量分率达到80%时。基于PP、PMMA和PVC的复合材料的燃烧热分别减少了13.2%、22.9%和34.7%.在此情况下.测量结果存在很大误差.并且其具体值还因聚合物而异.文中在定量研究的基础上.提出了一种利用分解焓对锥形量热仪测定的有效燃烧热值进行校正的方法。并给出了校正后的结果同原实验值的比较。 相似文献