排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
采用分子动力学方法对微尺度下赤藓糖醇的固液相变及热传导现象进行了模拟研究。首先选用GROMOS力场计算了赤藓糖醇固液两相的密度并将预测结果与实测值进行对比,验证了该力场的适用性。采用界面/NPT法模拟了赤藓糖醇的微观熔化过程,通过体系的体积突变得到预测熔点约为400 K,和实测值(392±1)K较为吻合。与直接加热纯固态赤藓糖醇的方法相比,该方法由于引入固液界面降低了成核自由能位垒,使得微观熔化过程的模拟更准确。此外,基于非平衡分子动力学方法研究了赤藓糖醇分子间的微观热传导现象。模拟得到液态赤藓糖醇的热导率为0.33~0.35 Wm~(-1)K~(-1),与宏观实测值(0.33±0.02)Wm~(-1)K~(-1)保持一致。因为处于液态时赤藓糖醇的分子分布具有无序性,所以其热导率预测值几乎不随模拟系统的尺寸而变化。 相似文献
2.
光发射显微镜(PEM)系统是应用于微电子器件漏电流定位和分析的有效工具。利用PEM系统的激光光束诱导阻抗变化(OBIRCH)功能和光发射(EMMI)功能,从正面可直接对功率器件大的漏电流进行定位观察。利用PEM的EMMI功能,还可从背面对器件微弱的漏电流进行定位和分析。介绍了PEM系统对功率器件芯片不同量级的漏电流进行定位与分析的应用,为分析功率器件漏电流失效提供依据。 相似文献
3.
4.
5.
6月9日的宁波,正值“浙洽会”和“消博会”期间,在这非常时期发生槽车泄漏事故,深深牵动了宁波市委、市政府、公安机关及广大市民的心。经过多方努力,这颗安放在市区的“定时炸弹”成功地排除了。在成功处置的背后,有子弟兵默默的奉献———宁波市消防支队官兵与万众的心一起跳动。这天下午,一辆车牌为冀J32999的化危品槽车,满载24.6吨丙烯由镇海炼化开往江苏金陵石化。16时40分左右途径宁波环城北路苑西立交桥时,因驾驶员疏忽大意,开错车道,驶入了限高3.2米的小型车车道,撞上了苑西公铁立交桥。车头已进入了桥洞,槽罐车的罐体… 相似文献
6.
对可用于中低温相变储热的糖醇及二元共晶混合物的储释热特性进行非等温测试.选取熔点为90~200℃时的4种常见且价格低廉的糖醇(木糖醇、d-山梨糖醇、内消旋-赤藓糖醇和d-半乳糖醇)为候选对象,制备相应的6种两两组合的二元共晶糖醇.采用差示扫描量热仪,对糖醇及二元共晶混合物的相变温度和相变焓进行测试.结果表明,木糖醇、d-山梨糖醇以及含两者其中之一的5种二元共晶糖醇在熔化之后重新冷却的过程中不能结晶,形成过冷液态;唯一1种能够重新结晶的二元共晶糖醇(95mol%内消旋-赤藓糖醇/5mol% d-半乳糖醇)的结晶现象并非出现在冷却过程中,而是在再次升温过程中发生冷结晶.虽然内消旋-赤藓糖醇和d-半乳糖醇的重结晶性能较好,但存在较严重的过冷现象;当冷却速率为5℃/min时,两者的过冷度分别高达101.9和70.4℃.上述糖醇及二元共晶混合物虽然具有可观的储热密度,但在结晶过程中均存在各自的问题,须在实际应用中予以解决. 相似文献
7.
采用分子动力学方法对微尺度下赤藓糖醇的固液相变及热传导现象进行了模拟研究。首先选用GROMOS力场计算了赤藓糖醇固液两相的密度并将预测结果与实测值进行对比,验证了该力场的适用性。采用界面/NPT法模拟了赤藓糖醇的微观熔化过程,通过体系的体积突变得到预测熔点约为400 K,和实测值(392±1) K较为吻合。与直接加热纯固态赤藓糖醇的方法相比,该方法由于引入固液界面降低了成核自由能位垒,使得微观熔化过程的模拟更准确。此外,基于非平衡分子动力学方法研究了赤藓糖醇分子间的微观热传导现象。模拟得到液态赤藓糖醇的热导率为0.33~0.35 Wm-1K-1,与宏观实测值(0.33±0.02) Wm-1K-1保持一致。因为处于液态时赤藓糖醇的分子分布具有无序性,所以其热导率预测值几乎不随模拟系统的尺寸而变化。 相似文献
8.
9.
按照实际制作器件的工艺条件和方法,采用不同的Cu引线框架氧化时间,制备了多组无芯片的封装器件,并打磨Cu/EMC界面的样品。然后对样品进行了剪切实验和界面微观结构观察。剪切实验发现,适当的Cu预氧化时间能有效提高Cu/EMC界面强度。Cu/EMC界面的SEM照片显示,150 min的氧化时间使界面产生了大量不同形状的氧化物颗粒,断裂沿Cu氧化层或EMC过渡层发生,导致界面剪切强度离散。考虑到Cu氧化对Cu/EMC界面的影响及工艺成本,氧化时间范围为165℃下8~12 min。 相似文献
10.
相变材料的热稳定性在实际相变储热应用中至关重要。通过熔融共混的方法制备了可用于中温储热的D-半乳糖醇(69%(mol))/肌糖醇二元共晶相变材料,使用真空管式炉分别在463、473、483和493 K温度下将该共晶混合物加热5、10、15和20 h。然后采用差示扫描量热仪测量试样的熔化焓,并采用基于焓值变化的恒温动力学模型分析其焓值热降解特性,从而对其热稳定性进行评价。此外,采用添加抗氧化剂1010(1.0%(质量))的方法提高共晶糖醇的热稳定性。结果表明,在463 K温度下加热20 h后,共晶糖醇焓值下降24.9%;添加抗氧化剂后,其焓值仅下降8.25%。采用恒温动力学模型计算发现,共晶糖醇在463 K温度下焓值下降一半所用的时间为154h,添加抗氧化剂1010后,其热降解时间增加约4倍。当加热温度升高至473、483、493 K时,热降解时间分别提高约2.6、1.6、1.1倍,热降解速率k值分别降低62.65%、40.42%、6.51%。结果表明添加抗氧化剂可有效提高共晶糖醇的热稳定性。 相似文献
1