In this work, we designed, fabricated and tested a disposable, flow-through amperometric sensor for free chlorine determination in water. The sensor is based on the principle of an electrochemical cell. The substrate, as well as the top microfluidic layer, is made up of a polymer material. The advantages include; (a) disposability from low cost; (b) stable operation range from three-electrode design; (c) fluidic interconnections that provide on line testing capabilities; and (d) transparent substrate which provides for future integration of on-chip optics. The sensor showed a good response and linearity in the chlorine concentration ranging from 0.3 to 1.6 ppm, which applies to common chlorination process for drinking water purification. 相似文献
A crying need of the day in India is to supply safe drinking water to its villages, towns and cities. Though the urban needs are partially met by organized water supply schemes, acute water shortages are felt at various times in this sector also with the expanding industrialization of the country. In many areas of arid and semi-arid regions, only brackish waters are available which are unfit for human consumption.Research and development effort at CSMCRI on the two membrane processes, reverse osmosis and electrodialysis, during the past decade has been reviewed. Some of the current activities in the rural sector and the future potential for these two processes in tackling the pressing needs of potable water to the rural masses in India are outlined. In the industrial sector, these two processes have immense potentialities in pollution abatement and water reuse. 相似文献
The present investigation shows the role of chromium in Fe–P binary and Fe–P–Cr ternary alloys. The compositions are characterized in terms of microstructure, porosity content, hardness and tensile properties. The alloys were made using a hot powder forging technique. In this process mild steel encapsulated powders were hot forged into slabs. Then the slabs were hot rolled and annealed to relieve the residual stresses. Densifications as high as 98.9% of theoretical density have been realized. Microstructures of these alloys consist of single-phase ferrite only. Both Fe–0.45P and Fe–0.45P–3Cr alloys showed very high strength. As forged and hot rolled Fe–0.45P alloy showed low elongation. It was observed that, the addition of Cr to Fe–P based alloys caused an increase in strength associated with the reduction in ductility. Alloys developed in the present investigation were capable of hot working to very thin gage of sheets and wires. 相似文献
The temperature dependence of the differential gain in AlInGaAs 1310-nm vertical-cavity lasers is investigated. The variations in differential gain and in relaxation resonance frequency are shown to depend on the room-temperature offset between the gain peak wavelength and the wavelength of the lasing mode. The tradeoff between high modulation bandwidth and good high-temperature performance for vertical-cavity lasers is analyzed. A cavity mode that is red-shifted about 25 nm from the gain peak is shown to minimize the variation in modulation bandwidth with temperature, and simultaneously allow for satisfactory high-temperature operation. Experimental results are presented and compared to calculated results with excellent agreement. Because of the change in gain-mode offset with internal temperature, the measured modulation current efficiency changed from about 2 to 4.8 GHz/mA/sup 1/2/ for an increase in drive current from 2 to 10 mA. 相似文献
The automatic identification of the modulation format of a detected signal is a major task of an intelligent receiver in both military and civilian applications. It is well known that the maximum likelihood (ML) classifier requires a priori knowledge of the incoming signal and channel (including amplitude, timing information, noise power, and the roll-off factor of the pulse-shaping filter). To relax this requirement, we introduce a novel estimator to estimate the parameters required by the ML classifier which is blind to the modulation scheme of the received signal, and this gives rise to a new blind modulation classifier for digital amplitude-phase modulated signals. While the proposed classifier is completely blind, the simulation results show that the performance of this classifier is very close to the optimal non-blind classifier.
A new long-wavelength vertical-cavity surface-emitting laser structure is described that utilizes AlGaAs-GaAs mirrors bonded to AlInGaAs-InP quantum wells with an intracavity buried tunnel junction. This structure offers complete wavelength flexibility in the 1250-1650 nm fiber communication bands and reduces the high free-carrier losses and bonded junction voltage drops in previous devices. The intracavity contacts electrically bypass the bonded junctions to reduce threshold voltage. N-type current spreading layers and undoped AlGaAs mirrors minimize optical losses. This has enabled 134/spl deg/C maximum continuous-wave lasing temperature, 2-mW room-temperature continuous-wave single-mode power, and 1-mW single-mode power at 80/spl deg/C, in various devices in the 1310-1340 nm wavelength range. 相似文献
Shallow junctions are formed in crystalline Si by low-energy ion implantation of B+, P+, or As+ species accompanied by electrical activation of dopants by rapid thermal annealing and the special case of spike annealing.
Diffusion depths were determined by secondary ion-mass spectroscopy (SIMS). Electrical activation was characterized by sheet
resistance, Hall coefficient, and reverse-bias diode-leakage measurements. The B+ and P+ species exhibit transient-enhanced diffusion (TED) caused by transient excess populations of Si interstitials. The electrically
activated fraction of implanted dopants depends mainly on the temperature for B+ species, while for P+ species, it depends on both temperature and P+ dose. The relatively small amount of diffusion associated with As+ implants is favorable for shallow-junction formation with spike annealing. 相似文献
Multihop wireless mesh networks are becoming a new attractive communication paradigm owing to their low cost and ease of deployment. Routing protocols are critical to the performance and reliability of wireless mesh networks. Traditional routing protocols send traffic along predetermined paths and face difficulties in coping with unreliable and unpredictable wireless medium. In this paper, we propose a Simple Opportunistic Adaptive Routing protocol (SOAR) to explicitly support multiple simultaneous flows in wireless mesh networks. SOAR incorporates the following four major components to achieve high throughput and fairness: 1) adaptive forwarding path selection to leverage path diversity while minimizing duplicate transmissions, 2) priority timer-based forwarding to let only the best forwarding node forward the packet, 3) local loss recovery to efficiently detect and retransmit lost packets, and 4) adaptive rate control to determine an appropriate sending rate according to the current network conditions. We implement SOAR in both NS-2 simulation and an 18-node wireless mesh testbed. Our extensive evaluation shows that SOAR significantly outperforms traditional routing and a seminal opportunistic routing protocol, ExOR, under a wide range of scenarios. 相似文献