首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   15篇
  国内免费   2篇
电工技术   1篇
化学工业   30篇
金属工艺   2篇
机械仪表   2篇
建筑科学   5篇
矿业工程   1篇
能源动力   5篇
轻工业   14篇
水利工程   11篇
石油天然气   11篇
无线电   10篇
一般工业技术   26篇
冶金工业   9篇
自动化技术   23篇
  2023年   2篇
  2022年   5篇
  2021年   11篇
  2020年   3篇
  2019年   11篇
  2018年   18篇
  2017年   17篇
  2016年   18篇
  2015年   6篇
  2014年   1篇
  2013年   12篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1993年   2篇
  1984年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
1.
In Classical Bayesian approach, estimation of lifetime data usually is dealing with precise information. However, in real world, some informations about an underlying system might be imprecise and represented in the form of vague quantities. In these situations, we need to generalize classical methods to vague environment for studying and analyzing the systems of interest. In this paper, we propose the Bayesian estimation of failure rate and mean time to failure based on vague set theory in the case of complete and censored data sets. To employ the Bayesian approach, model parameters are assumed to be vague random variables with vague prior distributions. This approach will be used to induce the vague Bayes estimate of failure rate and mean time to failure by introducing and applying a theorem called “Resolution Identity” for vague sets. In order to evaluate the membership degrees of vague Bayesian estimate for these quantities, a computational procedure is investigated. In the proposed method, the original problem is transformed into a nonlinear programming problem which is then divided into eight subproblems to simplifying computations.  相似文献   
2.

One of the most important reactions in organic synthesis is Ullmann-type C–N coupling reaction which has been used for preparation of numerous biologically active compounds. In this work, CuI immobilized on tricationic ionic liquid anchored on functionalized magnetic hydrotalcite (Fe3O4/HT-TIL-CuI) has been successfully prepared and fully characterized by different techniques, including fourier-transform infrared spectroscopy, vibrating sample magnetometer, thermo gravimetric analysis, transmission electron microscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, zeta potential, X-ray diffraction, temperature programmed desorption of ammonia (NH3-TPD), temperature-programmed reduction and inductively coupled plasma. The results showed that the as-prepared nanocatalyst possesses plate-like morphology with approximate size of 50 nm and superparamagnetic behavior. Also, total acidity and total hydrogen consumption of the nanocatalyst were measured to be 8.5 and 1.41 mmol g?1, respectively. This nanocatalyst exhibited favorable performance for C–N coupling reaction among a variety of aryl halides and N(H)-heterocycles (benzimidazoles, pyrazoles and triazoles) in the presence of 2.5 mol% of nanocatalyst without any additives under air atmosphere revealing high yields in all cases. Besides, it is noted that in the present system the desired product can be easily and quickly isolated and nanocatalyst also recovered magnetically from the reaction mixture employing a permanent magnet for at least six consecutive trials without a discernible decrease in catalytic activity which makes the proposed methodology appropriate for industrial. The findings demonstrated the advantages of the present method as no need for neutral atmosphere, appropriate times, recyclability of the catalyst, broad substrate scope, minimization of chemical waste, simple purification of products, easy workup process, and high yields.

  相似文献   
3.
4.
α-Tocopherol (α-Toc) has valuable biological activity, but its activity is limited when exposed to environmental factors. Nanocapsules can be used to overcome this problem. Using nanocapsules in the range of 100–200 nm is more beneficial. A 24 full factorial design was carried out to optimize the size of nanocapsules using the complex coacervation method. The four factors were the amount of the wall material, the ratio of core material to wall material, the pH of the solution, and the speed of the homogenizer. The smallest nanocapsules (176 nm) were obtained at a wall content (gelatine and pectin) of 0.8 mg, a percentage of core material (α-Toc) to wall material of 20%, a pH = 4.5, and a homogenizer speed of 12,000 rpm. The encapsulation efficiency was 90.6 ± 1.1%, and the encapsulation yield was 83.4 ± 1.6%. Assessment of the stability of α-Toc after 1 month showed that encapsulation could improve its stability in the presence of three influential factors: humidity, light, and temperature.  相似文献   
5.
In addition to conventional approach to ensure the successful application of polymer hydrogels in maintaining temporary well plugging, exact analysis of gel formation and gel strength properties in wellbore are necessary. In this work, bottles and rheology tests are used to investigate the polymer hydrogel gelation time and cross-linking kinetics of sol–gel systems which consist of polyacrylamide and chromium acetate hydroxide as a cross-linker. The effects of temperature of 90 °C and pressure of 3000 psi (typical Iranian oil well condition) were studied in relation to gelation time, strength and the mechanical properties of the hydrogel. The average molecular weight of the polymer chains between cross-link ties was evaluated using an oil-well laboratory system and compressive strength test. Differential scanning calorimeter (DSC) analysis of dried gel and the effect of temperature on the kinetics of the gel swelling in different solutions such as distilled water, tap water, formation water and oil were studied. The results showed that the number of tie points between each entanglement has not much reduced under pressure. Therefore, the prepared hydrogel can maintain its chemical structure under the Iranian oil well pressure and can be proposed to field studies. The degree of sol–gel reaction of prepared hydrogel and the activation energy based on the Arrhenius equation were calculated to be 1.5 and 274 kJ/mol, respectively.  相似文献   
6.
A hard anodization (HA) technique is employed using different mixtures of phosphoric/oxalic acid for fast fabrication of alumina nanopore arrays in voltages higher than 200 V. The mixtures enable to avoid the breakdown of porous anodic alumina (PAA) in the high voltages. It is revealed for the first time that continuously tunable pore intervals (Dint) from 500 to 750 nm can be controlled by varying the concentrations of oxalic acid at anodization voltages (Uanod) from 230 to 360 V, far beyond the Uanod in the single electrolyte of phosphoric acid or oxalic acid. The ratios of interpore distance, pore diameter and barrier layer thickness to anodization voltage are in the range of conventional HA process for each acid mixture. In this approach, the PAA film growth rate is 26 µm/h, being 7 times larger than that in typical mild anodization.  相似文献   
7.
This study considers the feasibility of uptake of cephalexin, an emerging contaminant, from aqueous solutions by using green local montmorillonite (GLM), montmorillonite coated with ZnO (ZnO/GLM) and montmorillonite coated with TiO2 (TiO2/GLM) in the presence of H2O2. Batch adsorption experiments were carried out as a function of pH, initial concentration of the cephalexin, adsorbent dosage, contact time, and temperature. Finally, the adsorbents were characterized by XRD, SEM and FTIR analyses. XRD patterns showed dramatic changes in the adsorbents after loading with the nanoparticles, confirming successful placing of the nanoparticles onto GLM. The GLM mineral surface after nanoparticle loading appears to be fully exposed and more porous with irregular shapes in particles diameters of 1-50 microns. FTIR analyses also confirmed dramatic changes in surface functional groups after modification with these nanoparticles. The results showed that the removal efficiency of cephalexin was better at lower pH values. Totally, the removal efficiency increased with increase in adsorbent dosage and contact time and decreased with concentration and temperature increase. The thermodynamics values of ΔG o and ΔH o revealed that the adsorption process was spontaneous and exothermic. In isotherm study, the maximum adsorption capacities (qm) were obtained to be 7.82, 17.09 and 49.26 mg/g for GLM, ZnO/GLM and TiO2/GLM, respectively. Temkin constant (B T ) showed that adsorption of cephalexin from solution was exothermic for all three adsorbents.  相似文献   
8.
Multimedia Tools and Applications - Video games are changing how we interact and communicate with each other. They can provide an authentic and collaborative platform for building new communities...  相似文献   
9.
Foam-filled thin-wall structures exhibit significant advantages in light weight and high energy absorption. They have been widely applied in automotive, aerospace, transportation and defense industries. Quasi-static tests were done to investigate the crash behavior of the empty and polyurethane foam-filled end-capped conical tubes. Non-linear dynamic finite element analyses were carried out to simulate the quasi-static tests. The predicted numerical crushing force and fold pattern were found to be in good agreement with the experimental results. The energy absorption capacities of the filled tubes were compared with the empty end-capped conical tubes. The results showed that the energy absorption capability of foam-filled tube is somewhat higher than that of the combined effect of the empty tube and the foam alone. Finally, the crash performance of the empty and foam filled conical and cylindrical tubes were compared. Results from this study can assist aerospace industry to design sounding rocket carrier payload based on foam-filled conical tubes.  相似文献   
10.
In the processing of steel, the design of any kind of heat treatment and/or thermomechanical processing schedule, to obtain a given microstructure, is greatly facilitated by the knowledge of the austenite-to-ferrite transformation characteristics. In the past, isothermal and continuous cooling tests were used in the laboratory to create time-temperature-transformation and continuous cooling transformation diagrams, respectively, which then served as the source of transformation data. The problem with such information is that it is only truly applicable to one particular microstructure, usually one resulting from a simple reheating cycle in the austenite region. Most industrial steel processing operations additionally involve several stages of high-temperature deformation leading to changes in the microstructure emerging from the final pass. To account for this situation, a novel laboratory method for the determination of the transformation characteristics, based on continuous cooling deformation testing, was developed. A major attraction of this test technique is that the specific microstructure, for which the transformation characteristics are required, can be generated by hot deformation and then immediately evaluated by continuous cooling deformation. In this article, the basic continuous cooling deformation test technique and general methods of data analysis are illustrated, using results from several different grades of steel. Formerly with the Department of Mining and Metallurgical Engineering, McGill University  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号