Different synthesis routes for carbon nitride materials (CN) and the resulting products were compared to study the photocatalytic activity (pollutant degradation) in dependence on structure and properties. The CN materials were synthesized by thermal decomposition of dicyandiamide in air and under argon as well as in sealed ampoules with or without the use of a salt melt. The as-prepared materials were characterized by IR spectroscopy, nitrogen adsorption measurement, solid-state NMR spectroscopy, diffuse reflectance UV–Vis spectroscopy, elemental analysis and powder X-ray diffraction (PXRD). The surface polarity of the CN materials was estimated by adsorption of the dicyano-bis(1,10-phenanthroline)-iron(II) complex, which allows an evaluation of the degree of condensation. The CN materials were tested with regard to the photocatalytic degradation of rhodamine B (RhB). It is shown that the photocatalytic activity increases with higher surface polarity. Promising CN materials with high RhB degradation of 85% within 25 min and high surface polarity of 0.89 were selected for an immobilization approach to obtain coatings on a silicone substrate using a high-volume low-pressure (HVLP) spray coating technique. To study the photocatalytic activity of the catalyst coatings, the degradation rates of an aqueous RhB solution and solutions of organic pollutants such as triclosan and ethinyl estradiol were examined. Pollutants are decomposed with up to 63% of the initial concentration. Xenon lamps and different LEDs were used as light sources for comparison. Particularly high degradation efficiencies were obtained using LEDs, and the degradation rates are increased by adjusting the emission spectrum of the lamp to the pollutant and absorption edge of the catalyst, which results in a 40 times higher degradation efficiencies of LEDs compared to a Xe lamp.
Sorption of P to the filter material Filtralite-P was examined at a small, medium and large scale. In the small- and meso-scale laboratory models, the sorbed amount of total phosphorus (P) was heterogeneously distributed with more P sorbed in the inlet zone and the bottom layers. The full-scale system had, on the other hand, the highest sorbed concentration in the outlet region. The overall P sorption capacity of the material was 8030, 4990 and 521 mg P kg(-1) Filtralite-P for Box 1, Box 2 and meso scale, respectively. This equals 4.4, 2.8 and 0.29 kg P m(-3) material, respectively. However, the maximum sorption capacities found were 2500, 3887 and 4500 mg P kg(-1) Filtralite-P for the two small-scale box systems and the meso-scale container, respectively. In the full-scale system the overall P sorption capacity of the material was 52 mg P kg(-1) Filtralite-P (0.029 kg P m(-3) Filtralite-P with a maximum sorbed amount of P of 249 mg P kg(-1). Results from both the small- and meso-scale system show that when a constructed wetland (CW) is saturated, i.e. when the outlet concentration has reached its maximum allowed concentration of 1.0 mg P l(-1), only parts of the filter material will have reached the sorption capacity. Sequential extractions of Filtralite-P showed that the loosely bound P, Ca-P and Al-P were the primary P sorption pools both in the small-scale models and in the full-scale CW. However, the proportion of these three fractions varied with time and change in pH. A white product precipitated in the outlet zone of both the small-scale box models as well as the onsite CW. The surface of these precipitation particles was identified by X-ray diffraction and SEM method as CaCO3 and precipitated Ca- and Mg-phosphates. 相似文献
Laboratory experiments were conducted to assess microbial reductive dechlorination in one-dimensional sand columns containing a 10 cm long source zone of uniformly distributed residual tetrachloroethene (PCE) nonaqueous phase liquid (NAPL), a 10 cm long transition zone directly down-gradient of the source zone containing some nonuniformly distributed NAPL ganglia, and a 40 cm long plume region down-gradient of the transition zone. The activity and distribution of Sulfurospirillum multivorans, a PCE-to-1,2-cis-dichloroethene (cis-DCE) dechlorinating bacterium, was evaluated in columns containing either a mixed-NAPL (0.25 mol/mol PCE in hexadecane) or pure PCE-NAPL. Significant dechlorination of PCE to cis-DCE was observed in the mixed-NAPL column, resulting in 53% PCE-NAPL mass recovery in the effluent with PCE-NAPL dissolution enhanced by up to 13.6-fold (maximum) and 4.6-fold (cumulative) relative to abiotic dissolution. Quantitative real-time PCR targeting pceA, the PCE reductive dehalogenase gene of S. multivorans, revealed that S. multivorans cells were present in the NAPL source zone, and increased in numbers (i.e., grew) throughout the source and transition zones. In contrast, minimal reductive dechlorination and microbial growth were observed in the column containing pure PCE-NAPL, where aqueous-phase PCE concentrations reached saturation. These results demonstrate that microbial growth within NAPL source zones is possible, provided that contaminant concentrations remain below levels toxic to the dechlorinating organisms, and that microbial growth can result in significant bioenhanced NAPL dissolution. 相似文献
Simultaneous modeling of true 2-D spectroscopy data, or more generally, interrelated spectral datasets has been described previously and is useful for quantitative magnetic resonance spectroscopy applications. In this study, a combined method of reference-lineshape enhanced model fitting and two-dimensional prior-knowledge fitting for the case of diffusion weighted MR spectroscopy is presented.
Materials and methods
Time-dependent field distortions determined from a water reference are applied to the spectral bases used in linear-combination modeling of interrelated spectra. This was implemented together with a simultaneous spectral and diffusion model fitting in the previously described Fitting Tool for Arrays of Interrelated Datasets (FiTAID), where prior knowledge conditions and restraints can be enforced in two dimensions.
Results
The benefit in terms of increased accuracy and precision of parameters is illustrated with examples from Monte Carlo simulations, in vitro and in vivo human brain scans for one- and two-dimensional datasets from 2-D separation, inversion recovery and diffusion-weighted spectroscopy (DWS). For DWS, it was found that acquisitions could be substantially shortened.
Conclusion
It is shown that inclusion of a measured lineshape into modeling of interrelated MR spectra is beneficial and can be combined also with simultaneous spectral and diffusion modeling.
This paper presents a contingency screening method and a framework for its on-line implementation. The proposed method carries out contingency screening and on-line stability assessment with respect to first-swing transient stability. For that purpose, it utilizes the single machine equivalent method and aims at improving the prior developed contingency screening approaches. In order to determine vulnerability of the system with respect to a particular contingency, only one time-domain simulation needs to be performed. An early stop criteria is proposed so that in a majority of the cases the simulation can be terminated after a few hundred milliseconds of simulated system response. The method’s outcome is an assessment of the system’s stability and a classification of each considered contingency. The contingencies are categorized by exploiting parameters of an equivalent one machine infinite bus system. A novel island detection approach, appropriate for an on-line application since it utilizes efficient algorithms from graph theory and enables stability assessment of individual islands, is also introduced. The New England and New York system as well as the large-scale model of the Continental-European interconnected system are used to test the proposed method with respect to assessment accuracy and computation time. 相似文献
Thermal loading induces modifications of the precipitation microstructure of Al–Si–Cu–Mg alloys. This study focuses on the effect of deformation on precipitation microstructure during thermomechanical loadings. Several specimens were thermomechanically cycled while others were exposed to the same thermal cycles without any mechanical loading. The nature and morphological characteristics of the precipitation microstructure of the thermomechanically cycled specimens are compared to those of the thermally aged ones, using transmission electron microscopy (TEM), in order to assess the effect of deformation on the precipitation microstructure and especially on the kinetics of precipitate growth. The absence of any significant effect of superimposed straining during thermal cycling is discussed. Implications for the prevision of yield strength degradation during service operation are briefly presented.
Over recent years land use regression (LUR) has become a frequently used method in air pollution exposure studies, as it can model intra-urban variation in pollutant concentrations at a fine spatial scale. However, very few studies have used the LUR methodology to also model the temporal variation in air pollution exposure. The aim of this study is to estimate annual mean NO2 and PM10 concentrations from 1996 to 2008 for Greater Manchester using land use regression models. The results from these models will be used in the Manchester Asthma and Allergy Study (MAAS) birth cohort to determine health effects of air pollution exposure.The Greater Manchester LUR model for 2005 was recalibrated using interpolated and adjusted NO2 and PM10 concentrations as dependent variables for 1996-2008. In addition, temporally resolved variables were available for traffic intensity and PM10 emissions. To validate the resulting LUR models, they were applied to the locations of automatic monitoring stations and the estimated concentrations were compared against measured concentrations.The 2005 LUR models were successfully recalibrated, providing individual models for each year from 1996 to 2008. When applied to the monitoring stations the mean prediction error (MPE) for NO2 concentrations for all stations and years was -0.8 μg/m³ and the root mean squared error (RMSE) was 6.7 μg/m³. For PM10 concentrations the MPE was 0.8 μg/m³ and the RMSE was 3.4 μg/m³.These results indicate that it is possible to model temporal variation in air pollution through LUR with relatively small prediction errors. It is likely that most previous LUR studies did not include temporal variation, because they were based on short term monitoring campaigns and did not have historic pollution data. The advantage of this study is that it uses data from an air dispersion model, which provided concentrations for 2005 and 2010, and therefore allowed extrapolation over a longer time period. 相似文献