首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43641篇
  免费   13181篇
  国内免费   11篇
电工技术   792篇
综合类   4篇
化学工业   18407篇
金属工艺   407篇
机械仪表   801篇
建筑科学   1811篇
矿业工程   4篇
能源动力   962篇
轻工业   8141篇
水利工程   308篇
石油天然气   69篇
无线电   7077篇
一般工业技术   11999篇
冶金工业   1088篇
原子能技术   37篇
自动化技术   4926篇
  2024年   21篇
  2023年   74篇
  2022年   269篇
  2021年   504篇
  2020年   1570篇
  2019年   3285篇
  2018年   3238篇
  2017年   3574篇
  2016年   4010篇
  2015年   4034篇
  2014年   4066篇
  2013年   5302篇
  2012年   2953篇
  2011年   2637篇
  2010年   2821篇
  2009年   2749篇
  2008年   2284篇
  2007年   2096篇
  2006年   1797篇
  2005年   1506篇
  2004年   1459篇
  2003年   1399篇
  2002年   1337篇
  2001年   1154篇
  2000年   1131篇
  1999年   520篇
  1998年   201篇
  1997年   175篇
  1996年   110篇
  1995年   68篇
  1994年   64篇
  1993年   53篇
  1992年   36篇
  1991年   37篇
  1990年   33篇
  1989年   20篇
  1988年   21篇
  1987年   23篇
  1986年   25篇
  1985年   23篇
  1984年   19篇
  1983年   17篇
  1982年   19篇
  1981年   24篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1977年   12篇
  1976年   20篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This study was undertaken to develop a modified atmosphere package to control microbial growth in ready‐to‐eat (RTE) products stored at ambient temperature. Ethanol and/or limonene associated with modified atmosphere (CO2 : O2 : N2 = 30% : 5% : 65%) was used to inhibit the growth of total air‐borne microorganisms and Escherichia coli in RTE products stored at 25°C. The results indicated that 0.05% ethanol vapour in the headspace was effective to inhibit the growth of air‐borne microorganisms and E. coli at 25°C for 72 h in a model study, and the effectiveness was related to ethanol content. Both 73 ppm limonene and 0.05% ethanol vapour enhanced the bacteriostatic effect of modified atmosphere in RTE sushi roll products, and no off‐flavour was detected using this formulated gas; however, no significant inhibitory effect was observed for RTE cold noodle products. This study concludes that combinations of carbon dioxide, ethanol or limonene vapours are effective to inhibit microbial growth in RTE food at ambient temperature, and the outcome may be due to the hurdle effect. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Amphiphilic magnetic microspheres ranging in diameter from 5 to 100 µm were prepared by dispersion copolymerization of styrene and poly(ethylene oxide) vinylbenzyl (PEO‐VB) macromonomer (MPEO) in the presence of Fe3O4 magnetic fluid. The effects of various polymerization parameters on the average particle size were systematically investigated. The average particle size was found to increase with increasing styrene concentration and initiator concentration. It also increased with decreasing stabilizer concentration and molecular weight of MPEO. The content of the hydroxyl groups localized in the microspheres ranged from 0.01 to 0.2 mmol g?1. © 2003 Society of Chemical Industry  相似文献   
3.
Gas/liquid mass transfer has been investigated using a stirred vessel gas/liquid contactor using non‐Newtonian media and carbon dioxide as absorbent and gas phase, respectively. The volumetric mass transfer coefficients at different operational variables have been determined. Non‐Newtonian media (liquid phase) were prepared as aqueous solutions of sodium carboxymethyl cellulose salt. The influence of the rheological properties, polymer concentration, stirring rate, and gas flow rate on mass transfer was studied for these liquid phases. Kinematic viscosity and density experimental data were used to calculate the average molecular weight corresponding to the polymer employed. The Ostwald model has been used to fit the rheological behavior of aqueous solutions of the polymer employed as absorbent phase. Reasonably good agreement was found between the predictions of the proposed models and the experimental data of mass transfer coefficients.  相似文献   
4.
In advancement of Pyrosil®‐technology a new kind of precursor delivery was developed, build and tested on real substrates. A Lab‐demonstrator was build to demonstrate the resources of the technology.  相似文献   
5.
γ-Al2O3 supported vanadium oxides were modified by tungsten and molybdenum oxides in order to improve dispersion and selectivity towards olefins in propane oxidative dehydrogenation (ODH). Both vanadium–tungsten and vanadium–molybdenum catalysts were obtained by adsorption of mixed isopolyanions (VW5O195−, V2W4O194−, VMo5O195− and V2Mo4O194−) from aqueous solutions. The isopolyanion solutions were characterized by UV-Vis and 51V NMR spectroscopy. Vanadium, vanadium–tungsten and vanadium–molybdenum precursors and catalysts were also characterized by UV-Vis (diffuse reflectance) and solid state 51V NMR spectroscopy. An improved selectivity to propene in the presence of tungsten and molybdenum in VOx/γ-Al2O3 was observed and attributed to dilution of vanadium by tungsten or molybdenum oxides on the γ-Al2O3 surface.  相似文献   
6.
Nucleation and growth mechanisms and kinetics of crystals of an amino acid salt were investigated in a methanol‐water system by measuring and evaluating the induction time as a function of the supersaturation ratio and temperature in batch salting out crystallization experiments. Discrimination between the possible crystallization mechanisms, and estimation of the kinetic parameters were carried out using nonlinear parameter identification. The results concerning the growth mechanism obtained were checked additionally by measuring the induction time as a function of number density of seed crystals.  相似文献   
7.
Conducting poly(aniline‐co‐o‐anisidine) (PAS) films with different ratios of aniline units in the polymer chain were prepared by oxidative polymerization of different molar ratios of aniline and o‐anisidine in 1 M HCl using cyclic voltammetry. Due to the much higher reactivity of o‐anisidine, the structure and properties of PASs were found to be dominated by the o‐anisidine units. The polymerization of poly‐o‐anisidine and PASs followed zero‐order kinetics with respect to formation of the polymer (film thickness) and the autocatalytic polymerization of aniline was completely inhibited. In contrast to polyaniline, a decrease in the polymerization temperature was found to increase the amount of copolymer formed and its redox charge. The presence of aniline units in PASs led to a pronounced increase in the molecular weight and conductivity, and a decrease in the solubility in organic solvents. Repetitive charging/discharging cycles showed that PASs resist degradation more than polyaniline. Copyright © 2003 Society of Chemical Industry  相似文献   
8.
Data mining extracts implicit, previously unknown, and potentially useful information from databases. Many approaches have been proposed to extract information, and one of the most important ones is finding association rules. Although a large amount of research has been devoted to this subject, none of it finds association rules from directed acyclic graph (DAG) data. Without such a mining method, the hidden knowledge, if any, cannot be discovered from the databases storing DAG data such as family genealogy profiles, product structures, XML documents, task precedence relations, and course structures. In this article, we define a new kind of association rule in DAG databases called the predecessor–successor rule, where a node x is a predecessor of another node y if we can find a path in DAG where x appears before y. The predecessor–successor rules enable us to observe how the characteristics of the predecessors influence the successors. An approach containing four stages is proposed to discover the predecessor–successor rules. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 621–637, 2006.  相似文献   
9.
A central event in the life of a cellular system is the interaction between the exterior and the interior compartments. Biochemical signals arrive at the cellular surface, bind to their membrane bound receptor followed by a conformational change triggering the release of an internal chemical or electrical signal.This basic principle is followed by all our perceptive abilities like sense of smell or taste, but also by different signal transduction pathways involved in nerve conductivity, vision, sense of touch or hearing. To follow and mimic this principle of parallel registration is one of the aims of modern nanobiotechnology. If we are able to specifically biofunctionalize small arrays of a solid surface, which could be an electrode or a semiconductor, this approach will enable us to build up devices called “biochips” or “biosensors” that allow the determination of bioactive molecules with high specificity at lowest concentrations. Potential pharmacological active substrates might be screened as well as new receptors may be determined. Applications in genomics as well as proteomics are realistic. The major prerequisite for such a broad spectrum of applications is the fabrication of receptive surfaces. Biomolecules have to be surface‐adsorbed in a highly reproducible, oriented and well organised fashion, a task which in biology is taken by the cellular membranes as external or internal receptive surfaces. The physical principles like hydrogen bonds, electrostatic or hydrophobic interactions that lead to such an organized surface are well known. To synthesize molecular building blocks and to position them onto an otherwise unspecific surface is one of the challenges of nanobiotechnology combining biological knowledge and chemical skills with biophysical techniques that allow to handle or analyze even single molecules.  相似文献   
10.
Polyaryloxydiphenylsilanes were prepared from phosphorus‐containing diols and diphenydichlorolsilane through solution polymerization. With a stoichiometric imbalance in feed monomers, the resulting polymers exhibited moderate melting points and good processing properties. The polymers prepared showed initial decomposition temperatures above 340 °C, excellent thermal stability, high char yields at 850 °C and very high limited oxygen index values of 56–59. The polymers' char yields and their (P + Si) contents showed linear relationships. © 2003 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号