首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   7篇
电工技术   15篇
化学工业   93篇
金属工艺   3篇
建筑科学   2篇
能源动力   6篇
轻工业   8篇
水利工程   2篇
无线电   13篇
一般工业技术   38篇
冶金工业   19篇
自动化技术   72篇
  2023年   4篇
  2022年   17篇
  2021年   20篇
  2020年   8篇
  2019年   6篇
  2018年   11篇
  2017年   3篇
  2016年   2篇
  2015年   10篇
  2014年   15篇
  2013年   19篇
  2012年   9篇
  2011年   19篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   14篇
  2006年   9篇
  2005年   8篇
  2004年   1篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   11篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1991年   1篇
  1990年   2篇
  1987年   3篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
1.
In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/Fe2O3/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: Fe2O3 is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon‐to‐charge carrier conversion efficiency measurements, and long‐term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best‐performing FeNiOOH/Fe2O3/graphene system compared to its pristine Fe2O3 counterpart. Transient absorption spectroscopy measurements reveal an increased hole‐lifetime in the case of the Fe2O3/graphene samples. Long‐term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from Fe2O3, thus eliminating the pathway leading to the corrosion of graphene.  相似文献   
2.
The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on large-diameter (140 mm), SI Cd1−xZnxTe (x=0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (≥1cm3) with electron mobility-lifetime product (μτe) in the (3–7) × 10−3 cm2/V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.  相似文献   
3.
We have studied the defect levels in as grown and post growth processed cadmium telluride (CdTe) using thermoelectric effect spectroscopy (TEES) and thermally stimulated current (TSC) techniques. We have extracted the thermal energy (Eth) and trapping cross section (σth) for the defect levels using the initial rise and variable heating rate methods. We have identified 10 different defect levels in the crystals. Thermal ionization energy values obtained experimentally were compared to theoretical values of the transition-energy levels of intrinsic and extrinsic defects and defect complexes in CdTe determined by first-principles band-structure calculations. On the basis of this comparison, we have associated the observed ionization levels with various native defects and impurity complexes.  相似文献   
4.
Direct focused-ion-beam writing is presented as an enabling technology for realizing functional spin-wave devices of high complexity, and demonstrate its potential by optically-inspired designs. It is shown that ion-beam irradiation changes the characteristics of yttrium iron garnet films on a submicron scale in a highly controlled way, allowing one to engineer the magnonic index of refraction adapted to desired applications. This technique does not physically remove material, and allows rapid fabrication of high-quality architectures of modified magnetization in magnonic media with minimal edge damage (compared to more common removal techniques such as etching or milling). By experimentally showing magnonic versions of a number of optical devices (lenses, gratings, Fourier-domain processors) this technology is envisioned as the gateway to building magnonic computing devices that rival their optical counterparts in their complexity and computational power.  相似文献   
5.
6.
N-Amination of Isoquinoline Bases 3, 3-Pentamethylene oxaziridine 1 forms an N N-bond with secondary isoquinoline bases 2a – f to give the cyclohexylidene hydrazines 3a – f . In some cases nitrogen elimination yielding indane derivatives 13b, 13e competes with hydrazone formation. The cyclic Schiff'base 14 and the β-carboline derivative 16 can also be aminated.  相似文献   
7.
The human genome codes only a few thousand druggable proteins, mainly receptors and enzymes. While this pool of available drug targets is limited, there is an untapped potential for discovering new drug-binding mechanisms and modes. For example, enzymes with long binding cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration from a bulk solution to the destination site. Drug design can use these prerequisite sites as new structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce a new method called NetBinder for the systematic identification and classification of prerequisite binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor binding process and provides a networking framework on which to select the most important binding modes and uncover the entire binding mechanism, including previously undiscovered events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme because, like other potential targets, it has a long internal binding cavity that provides blebbistatin with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin 2 structural changes during blebbistatin binding shows excellent agreement with experimentally determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug design by a network-based elucidation of binding mechanisms at an atomic resolution.  相似文献   
8.
In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer’s disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.  相似文献   
9.
10.
Phenylalanine ammonia‐lyase (PAL), found in many organisms, catalyzes the deamination of l ‐phenylalanine (Phe) to (E)‐cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in‐line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)‐pent‐2‐ene‐4‐ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates. As PG is acyclic, its deamination cannot involve a Friedel–Crafts‐type attack at an aromatic ring. The reversibility of the PAL reaction, demonstrated by the ammonia addition to (E)‐pent‐2‐ene‐4‐ynoate yielding enantiopure l ‐PG, contradicts the proposed highly exothermic single‐step mechanism. Computations with the QM/MM models of the N‐MIO intermediates from l ‐PG and l ‐Phe in PAL show similar arrangements within the active site, thus supporting a mechanism via the N‐MIO intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号