首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   15篇
化学工业   64篇
金属工艺   5篇
机械仪表   2篇
建筑科学   11篇
能源动力   22篇
轻工业   44篇
石油天然气   2篇
无线电   7篇
一般工业技术   23篇
冶金工业   9篇
自动化技术   29篇
  2024年   2篇
  2023年   7篇
  2022年   12篇
  2021年   22篇
  2020年   8篇
  2019年   14篇
  2018年   10篇
  2017年   15篇
  2016年   6篇
  2015年   9篇
  2014年   6篇
  2013年   23篇
  2012年   6篇
  2011年   20篇
  2010年   8篇
  2009年   10篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   3篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有218条查询结果,搜索用时 0 毫秒
1.
Neural Computing and Applications - Renewable energy sources are installed into both distribution and transmission grids more and more with the introduction of smart grid concept. Hence, efficient...  相似文献   
2.
Both academic and corporate interest in sustainable supply chains has increased in recent years. Supplier selection process is one of the key operational tasks for sustainable supply chain management. This paper examines the problem of identifying an effective model based on sustainability principles for supplier selection operations in supply chains. Due to its multi-criteria nature, the sustainable supplier evaluation process requires an appropriate multi-criteria analysis and solution approach. The approach should also consider that decision makers might face situations such as time pressure, lack of expertise in related issue, etc., during the evaluation process. The paper develops a novel approach based on fuzzy analytic network process within multi-person decision-making schema under incomplete preference relations. The method not only makes sufficient evaluations using the provided preference information, but also maintains the consistency level of the evaluations. Finally, the paper analyzes the sustainability of a number of suppliers in a real-life problem to demonstrate the validity of the proposed evaluation model.  相似文献   
3.
It is well known that “green” principles and strategies have become vital for companies as the public awareness increased against their environmental impacts. A company’s environmental performance is not only related to the company’s inner environmental efforts, but also it is affected by the suppliers’ environmental performance and image. For industries, environmentally responsible manufacturing, return flows, and related processes require green supply chain (GSC) and accompanying suppliers with environmental/green competencies. During recent years, how to determine suitable and green suppliers in the supply chain has become a key strategic consideration. Therefore this paper examines GSC management (GSCM) and GSCM capability dimensions to propose an evaluation framework for green suppliers. However, the nature of supplier selection is a complex multi-criteria problem including both quantitative and qualitative factors which may be in conflict and may also be uncertain. The identified components are integrated into a novel hybrid fuzzy multiple criteria decision making (MCDM) model combines the fuzzy Decision Making Trial and Evaluation Laboratory Model (DEMATEL), the Analytical Network Process (ANP), and Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) in a fuzzy context. A case study is proposed for green supplier evaluation in a specific company, namely Ford Otosan.  相似文献   
4.
In this article, the electrodeposition process of Cu-Sn alloy powders from tripolyphosphate (TPP)-based electrolytes was investigated as a function of deposition parameters. The effects of deposition parameters such as current density, electrolyte composition (Cu/Sn mole ratio), mechanical stirring speed, and temperature on the Cu content of alloy powder and cathodic current efficiency were evaluated using the response surface methodology (RSM). The empirical models developed in terms of deposition parameters were found to be statistically adequate to describe the process responses. The study revealed that as far as the copper content was concerned in the alloyed powders, all parameters selected had positive correlations. However, a high stirring speed and low current density led to a greater current efficiency. The morphology and chemical composition of the electrodeposited Cu-Sn alloy powders were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and inductively coupled plasma (ICP) analysis. An SEM analysis showed that the powder morphology was affected considerably by the cathodic current density and stirring speed.  相似文献   
5.
A new method for synthesis of titanium dioxide (TiO2)-dye nanoparticles is reported. TiO2 nanocrystals were obtained at 150 and 200 °C by using chemically bonded TiO2-sensitizer dye as a precursor. Titanium tetraisopropoxide was first modified with a dye molecule and then precipitated by dropping into acidic water. A strongly colored precipitate was obtained. Hydrothermal growth of a colloidal solution was carried out in a Teflon-lined stainless steel autoclave. Dye sensitized solar cell efficiencies obtained were comparable and fill factor values were close to the analogous cells prepared by the use of conventional TiO2 paste techniques. This method allows the use of different substrates together with nanocrystalline TiO2 for many technological applications.  相似文献   
6.
7.
8.
9.
The breath figure (BF) method is an effective process for fabricating porous polymeric films. In this study, we fabricated porous polymer films from thermoplastic polyurethane (PU) through static BF with CHCl3 as a solvent under 55–80% relative humidity. The porous PU films were prepared within various pore structures and sizes, which were adjustable, depending on the fabrication conditions. The humidity and exposure time were examined as variable parameters affecting the surface morphology, wettability, and cytotoxicity. Atorvastatin calcium, a hyperlipidemic agent, was loaded into the porous films during the casting process, and the drug-loading and drug-releasing behaviors of the porous PU membranes were evaluated. Approximately 60–80% of the drug was released in 14 days. The films exhibited sustained drug-release performances because of the hydrophobicity and nonbiodegradable nature of PU for perivascular drug administration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47658.  相似文献   
10.
Surface tension is one of the most important rheological parameters of nanoliquids. It influences the thermophysical and mass transfer properties of nanostructures. Accurate estimation of the surface tension from operating variables is critical for determining optimal production processes. However, the challenges of producing nanoparticles and measuring their properties introduce experimental errors in the data used for mathematical modelling. Crisp regression approaches provide adequate representation of the data, but they do not provide information about the experimental uncertainty. In this study, a fuzzy-hybrid approach is proposed for mathematical modelling of surface tension of carboxymethyl cellulose/chitosan-α-Fe2O3 nanoparticles. Then, the proposed model is compared with a crisp model from a previous study. Error analysis is conducted to validate the constructed fuzzy model. It is observed that the fuzzy-hybrid modelling approach has yielded significantly lower error values (a 60%–90% improvement in all error metrics on average), and thus, it is superior to the crisp approach. This study contributes to the subject of modelling rheological properties. It is shown that the fuzzy-hybrid approach has impressive potential to be utilized for modelling the rheological properties of nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号