To design a clinically translatable nanomedicine for photodynamic theranostics, the ingredients should be carefully considered. A high content of nanocarriers may cause extra toxicity in metabolism, and multiple theranostic agents would complicate the preparation process. These issues would be of less concern if the nanocarrier itself has most of the theranostic functions. In this work, a poly(ethylene glycol)‐boron dipyrromethene amphiphile (PEG‐F54‐BODIPY) with 54 fluorine‐19 (19F) is synthesized and employed to emulsify perfluorohexane (PFH) into a theranostic nanoemulsion (PFH@PEG‐F54‐BODIPY). The as‐prepared PFH@PEG‐F54‐BODIPY can perform architecture‐dependent fluorescence/photoacoustic/19F magnetic resonance multimodal imaging, providing more information about the in vivo structure evolution of nanomedicine. Importantly, this nanoemulsion significantly enhances the therapeutic effect of BODIPY through both the high oxygen dissolving capability and less self‐quenching of BODIPY molecules. More interestingly, PFH@PEG‐F54‐BODIPY shows high level of tumor accumulation and long tumor retention time, allowing a repeated light irradiation after a single‐dose intravenous injection. The “all‐in‐one” photodynamic theranostic nanoemulsion has simple composition, remarkable theranostic efficacy, and novel treatment pattern, and thus presents an intriguing avenue to developing clinically translatable theranostic agents. 相似文献
Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).
Salt spray corrosion test was carried out on 6061 aluminum alloy, and quasi-static tensile test at room temperature was carried out on the sample with universal testing machine. The effect of salt spray corrosion on the mechanical properties of 6061 aluminum alloy was studied by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electrochemistry. The corrosion rate of 6061 aluminum alloy was quantitatively characterized by different corrosion parameters. It was found that local corrosion of 6061 aluminum alloy occurred in salt spray environment, mainly pitting corrosion and intergranular corrosion. With the increase of corrosion time, the polarization resistance of 6061 aluminum alloy decreases, and the corrosion rate significantly increases. The average corrosion rate and the maximum corrosion rate of 6061 aluminum alloy were characterized by corrosion weight loss and corrosion pit depth. And they can be transformed into each other. The mechanical properties of 6061 aluminum alloy were mainly affected by the depth of corrosion pit. With the increase of corrosion time, the tensile strength and fracture strain decreased, resulting in poor plasticity of the sample. At the same time, the change of elongation of 6061 aluminum alloy can be accurately predicted by the depth of corrosion pit. 相似文献
Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.
ABSTRACT Here, a novel cryogenic rolling plus intercritical annealing process was applied to a transformation-induced plasticity (TRIP) steel with a low chemical composition of carbon and manganese. Compared with traditional cold rolling, obvious grain refinement was observed, due to a high amount of dislocations retained. In addition, austenite volume fraction was increased, because of a unique nucleation mechanism. Subjected to cryogenic rolling, strength and ductility were increased, due to the enhanced austenite stability, which provided continuous and active TRIP effect. Consequently, tensile strength was increased to 1030?MPa, and elongation was increased to 38.2%. Thus, a great mechanical combination was obtained in a steel with a relatively low chemical composition with carbon and manganese, only by cryogenic rolling process. 相似文献