Bone autografts are often used for reconstruction of bone defects; however, due to the limitations of autografts, researchers have been in search of bone substitutes. Dentin is of particular interest for this purpose due to high similarity to bone. This in vitro study sought to assess the surface characteristics and biological properties of dentin samples prepared with different treatments. This study was conducted on regular (RD), demineralized (DemD), and deproteinized (DepD) dentin samples. X-ray diffraction and Fourier transform infrared spectroscopy were used for surface characterization. Samples were immersed in simulated body fluid, and their bioactivity was evaluated under a scanning electron microscope. The methyl thiazol tetrazolium assay, scanning electron microscope analysis and quantitative real-time polymerase chain reaction were performed, respectively to assess viability/proliferation, adhesion/morphology and osteoblast differentiation of cultured human dental pulp stem cells on dentin powders. Of the three dentin samples, DepD showed the highest and RD showed the lowest rate of formation and deposition of hydroxyapatite crystals. Although, the difference in superficial apatite was not significant among samples, functional groups on the surface, however, were more distinct on DepD. At four weeks, hydroxyapatite deposits were noted as needle-shaped accumulations on DemD sample and numerous hexagonal HA deposit masses were seen, covering the surface of DepD. The methyl thiazol tetrazolium, scanning electron microscope, and quantitative real-time polymerase chain reaction analyses during the 10-day cell culture on dentin powders showed the highest cell adhesion and viability and rapid differentiation in DepD. Based on the parameters evaluated in this in vitro study, DepD showed high rate of formation/deposition of hydroxyapatite crystals and adhesion/viability/osteogenic differentiation of human dental pulp stem cells, which may support its osteoinductive/osteoconductive potential for bone regeneration. 相似文献
Along with expansion in using of Internet and computer networks, the privacy, integrity, and access to digital resources have been faced with permanent risks. Due to the unpredictable behavior of network, the nonlinear nature of intrusion attempts, and the vast number of features in the problem environment, intrusion detection system (IDS) is regarded as the main problem in the security of computer networks. A feature selection technique helps to reduce complexity in terms of both the executive load and the storage by selecting the optimal subset of features. The purpose of this study is to identify important and key features in building an IDS. To improve the performance of IDS, this paper proposes an IDS that its features are optimally selected using a new hybrid method based on fruit fly algorithm (FFA) and ant lion optimizer (ALO) algorithm. The simulation results on the dataset KDD Cup99, NSL‐KDD, and UNSW‐NB15 have shown that the FFA–ALO has an acceptable performance according to the evaluation criteria such as accuracy and sensitivity than previous approaches. 相似文献
Wireless Personal Communications - A novel design of double-layer dual-band circularly polarized array antennas (DDCPAAs) is presented in this paper. First, a DDCP single antenna is introduced as... 相似文献
Telecommunication Systems - Interference is the main source of capacity limitation in wireless networks. In some medium access technologies in cellular networks, such as OFDMA, the allocation of... 相似文献
In this paper, a wind farm controller is developed that distributes power references among wind turbines while it reduces their structural loads. The proposed controller is based on a spatially discrete model of the farm, which delivers an approximation of wind speed in the vicinity of each wind turbine. The control algorithm determines the reference signals for each individual wind turbine controller in two scenarios based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch reference signals are determined while structural loads are minimized. To the best of authors’ knowledge, the proposed dynamical model is a suitable framework for control, since it provides a dynamic structure for behavior of the flow in wind farms. Moreover, the controller has been proven exceptionally useful in solving the problem of both power and load optimization on the basis of this model. 相似文献
Self-organizing networking (SON) is an automation technology designed to make the planning, configuration, management, optimization and healing of mobile radio access networks simpler and faster. Most current self-organization networking functions apply rule-based recommended systems to control network resources which seem too complicated and time-consuming to design in practical conditions. This research proposes a cognitive cellular network empowered by an efficient self-organization networking approach which enables SON functions to separately learn and find the best configuration setting. An effective learning approach is proposed for the functions of the cognitive cellular network, which exhibits how the framework is mapped to SON functions. One of the main functions applied in this framework is mobility load balancing. In this paper, a novel Stochastic Learning Automata has been suggested as the load balancing function in which approximately the same quality level is provided for each subscriber. This framework can also be effectively extended to cloud-based systems, where adaptive approaches are needed due to unpredictability of total accessible resources, considering cooperative nature of cloud environments. The results demonstrate that the function of mobility robustness optimization not only learns to optimize HO performance, but also it learns how to distribute excess load throughout the network. The experimental results demonstrate that the proposed scheme minimizes the number of unsatisfied subscribers (Nus) by moving some of the edge users served by overloaded cells towards one or more adjacent target cells. This solution can also guarantee a more balanced network using cell load sharing approach in addition to increase cell throughput outperform the current schemes.
Reducing the power consumption of a passive radio frequency identification (RFID) tag is the key in many applications. As the modulator is usually the most power-hungry block in an RFID tag, this paper proposes a power-saving modulator. The proposed modulator uses phase shift keying (PSK) backscatter modulation which allows tag to communicate data from its memory to a reader by PSK modulation. The proposed modulator uses a MOSCAP as a variable impedance and is designed in a new one-inverter structure in compare to the conventional varactor-based modulators designed in two-inverter structure, as this modulator needs just a low voltage swing to drive its MOSCAP. Using MOSCAP as the variable capacitance leads to a low voltage design. Also, the fundamental equations required for determination of the capacitive impedance seen by the antenna is presented. This impedance is the master key in modulator design. The modulator has been designed, simulated and optimized in 0.18 μm CMOS technology. All possible simulation results are presented to approve its compatible operation with C1 G2 EPC global standard. The power consumption of less than 46 nW is achieved in all process corner cases at 0.8 V power supply. 相似文献
Telecommunication Systems - In this paper, a physical-layer network coding (PNC) method is offered for a two-way relay network with spatial modulation (SM) for source node and relay node. For this... 相似文献