首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   10篇
化学工业   18篇
建筑科学   5篇
能源动力   9篇
轻工业   5篇
石油天然气   1篇
无线电   13篇
一般工业技术   12篇
冶金工业   1篇
自动化技术   10篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   3篇
  2020年   7篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Semiconductors - Abstract—In our work, we carry out a structural-spectroscopic study of AlGaN/GaN epitaxial layers grown by molecular-beam epitaxy with nitrogen-plasma activation on a hybrid...  相似文献   
2.
This paper reports the synthesis of highly conductive niobium doped titanium dioxide (Nb:TiO2) films from the decomposition of Ti(OEt)4 with dopant quantities of Nb(OEt)5 by aerosol‐assisted chemical vapor deposition (AACVD). Doping Nb into the Ti sites results in n‐type conductivity, as determined by Hall effect measurements. The doped films display significantly improved electrical properties compared to pristine TiO2 films. For 5 at.% Nb in the films, the charge carrier concentration was 2 × 1021 cm?3 with a mobility of 2 cm2 V–1 s–1 . The corresponding sheet resistance is as low as 6.5 Ω sq–1 making the films suitable candidates for transparent conducting oxide (TCO) materials. This is, to the best of our knowledge, the lowest reported sheet resistance for Nb:TiO2 films synthesized by vapour deposition. The doped films are also blue in colour, with the intensity dependent on the Nb concentration in the films. A combination of synchrotron, laboratory and theoretical techniques confirmed niobium doping into the anatase TiO2 lattice. Computational methods also confirmed experimental results of both delocalized (Ti4+) and localized polaronic states (Ti3+) states. Additionally, the doped films also functioned as photocatalysts. Thus, Nb:TiO2 combines four functional properties (photocatalysis, electrical conductivity, optical transparency and blue colouration) within the same layer, making it a promising alternative to conventional TCO materials.  相似文献   
3.
4.
Organosilicone thin films have been deposited by plasma polymerization (pp) in a plasma enhanced chemical vapor deposition (PECVD) system using hexamethyldisilazane (HMDSN:C6H19Si2N) as a monomer precursor, at different biases of the stainless-steel substrate holder. The substrate bias affected film thickness, surface morphology, chemical composition and photoluminescence (PL) emission. For a negatively biased substrate, it is found that the film thickness is the minimum, while the porosity and PL emission are the maximum. For a positively biased substrate, the thickness and the ratio of Si/N are the maximum which correspond to a blue shift of the PL emission in comparison with the case of non-biased grounded substrate. In addition, the characterization of the plasma using a single cylindrical Langmuir probe has been performed to obtain information about both the electron density and the positive ion energy, where it can be concluded that the ion energy plays a major role in determining film thickness.  相似文献   
5.
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.  相似文献   
6.
The present work is aimed to fabricate a new set of composite materials containing conducting poly(azomethine-ether) reinforced with single-walled carbon nanotubes in the form of single-walled carbon nanotube/poly(azomethine-ether)1–5 for excellent enhanced thermal as well as conducting behavior of poly(azomethine-ether). Single-walled carbon nanotubes of variable loading have been embedded into conducting poly(azomethine-ether) using in situ polymerization technique. Before attempting the polymerization, 1,3-thiazole established poly(azomethine-ether) and its conformable monomers have been prepared and their chemical structures have been correlated by spectral analyses. Furthermore, ηinh and Mw values for poly(azomethine-ether) were found 0.89?dL?g?1 and 39723.6, respectively. The fabricated single-walled carbon nanotube/poly(azomethine-ether)1–5 composites were specified and characterized by wide-angle X-ray diffraction patterns, Fourier transform infrared spectroscopy, thermal behavior, scanning electron microscopy, and transmission electron microscopy characterization techniques. A perfect indicative response for this composite material was estimated by Fourier transform infrared spectra and X-ray diffraction as well. Both techniques displayed all intensive characteristic peaks regarding single-walled carbon nanotubes and poly(azomethine-ether) in the spectra or diffraction pattern for single-walled carbon nanotube/poly(azomethine-ether)1–5. The role of single-walled carbon nanotubes on the performance of poly(azomethine-ether) was considerably examined. Single-walled carbon nanotube/poly(azomethine-ether)1–5 showed relatively higher thermal stability. Single-walled carbon nanotube/poly(azomethine-ether)1 displayed the lowest final composite degradation temperature value (552°C), whereas single-walled carbon nanotube/poly(azomethine-ether)5 displayed the highest value (621°C). T10 and T25 values showed a gradual temperature increased while single-walled carbon nanotubes increased. Single-walled carbon nanotube/poly(azomethine-ether)1 showed the lowest thermal stability and single-walled carbon nanotube/poly(azomethine-ether)5 showed the highest thermal stability between all fabricated products. Furthermore, transmission electron microscopy images showed a prominent increase in single-walled carbon nanotubes diameters (40–60?nm). The conductivity values were significantly increased while single-walled carbon nanotubes content was increased and reached to the semiconductors. ε′ values were also increased in both single-walled carbon nanotube/poly(azomethine-ether)4,5 which have higher single-walled carbon nanotubes content.  相似文献   
7.
Saloum  S.  Shaker  S. A.  Hussin  R.  Obaid  A.  Alkafri  M. N. 《SILICON》2020,12(8):1839-1846
Silicon - This study reports the effect of ageing on plasma polymerized hexamethyldisiloxane (pp-HMDSO) thin films properties during 90 days storage in the atmosphere. The monitoring of...  相似文献   
8.
The effect of an electromagnetic field (EMF) on the rate of copper(II) cementation from copper sulfate solutions on a rotating iron cylinder was investigated. The studied variables were cylinder rotation speed, magnetic field strength, and magnetic field direction. The application of EMF increased the rate of cementation in both parallel and perpendicular direction of the magnetic field where the latter proved to be more effective. The rate of mass transfer under an EMF was found to be more than doubled. The enhancement of copper recovery in presence of the EMF is due to the induced motion of Fe+n in the solution which is limited to a certain range of cylinder rotation speed. The power consumption for cementation of copper could be significantly reduced by utilizing EMF.  相似文献   
9.
Self compacting concrete (SCC) is a development of conventional concrete, in which the use of vibrator for compaction is no more required. This property of self compacting concrete has made its use more attractive all over the world. But its initial higher supply cost over conventional concrete, has hindered its application to general construction. Therefore, for producing low cost SCC, it is prudent to look at the alternates to help reducing the SSC cost. This research is aimed at evaluating the usage of bagasse ash as viscosity modifying agent in SCC, and to study the relative costs of the materials used in SCC.In this research, the main variables are the proportion of bagasse ash, dosage of superplasticizer for flowability and water/binder ratio. The parameters kept constant are the amount of cement and water content.Test results substantiate the feasibility to develop low cost self compacting concrete using bagasse ash. In the fresh state of concrete, the different mixes of concrete have slump flow in the range of 333 mm to 815 mm, L-box ratio ranging from 0 to 1 and flow time ranging from 1.8 s to no flow (stucked). Out of twenty five different mixes, five mixes were found to satisfy the requirements suggested by European federation of national trade associations representing producers and applicators of specialist building products (EFNARC) guide for making self compacting concrete. The compressive strengths developed by the self compacting concrete mixes with bagasse ash at 28 days were comparable to the control concrete. Cost analysis showed that the cost of ingredients of specific self compacting concrete mix is 35.63% less than that of control concrete, both having compressive strength above 34 MPa.  相似文献   
10.
This paper involves the investigations of the chilled water and ice cold thermal storage technologies along with the associated operating strategies for the air conditioning(AC) systems of the typical office buildings in Saudi Arabia, so as to reduce the electricity energy consumption during the peak load periods. In Saudi Arabia, the extensive use of AC for indoor cooling in offices composes a large proportion of the annual peak electricity demand. The very high temperatures over long summer periods, extending from May to October, and the low cost of energy are the key factors in the wide and extensive use of air conditioners in the kingdom. This intense cooling load adds up to the requirement increase in the capacity of power plants, which makes them under utilized during the off-peak periods. Thermal energy storage techniques are one of the effective demand-side energy management methods. Systems with cold storage shifts all or part of the electricity requirement from peak hours to off-peak hours to reduce demand charges and/or take advantage of off-peak rates. The investigations reveal that the cold thermal energy storage techniques are effective from both technical and economic perspectives in the reduction of energy consumption in the buildings during peak periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号