Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understanding of fluid–fluid interaction during low salinity water flooding through a series of organized experiments in which a crude oil sample with known properties was kept in contact with different brine solutions of various ionic strengths. Measuring brine pH, conductivity and crude oil viscosity and density for a period of 45 days illustrates the strong effect of the contact time and ionic strength on the dissociation of polar components and physical properties of the crude oil and brine. Besides, the interfacial tension (IFT) measurements show that the interfacial interactions are affected by several competitive interfacial processes. By decreasing the ionic strength of the brine, the solubility of naphthenic acids in the aqueous solution increases, and hence, the conductivity and the pH of the aqueous phase decrease. To verify this important finding, UV–Vis spectroscopy and 1H NMR analysis were also performed on aged brine samples. Notably, there is an ionic strength of brine in which the lowest IFT is observed, while the other physical properties are remained relatively unchanged. 相似文献
Worldwide Interoperability for Microwave Access (Wimax) is power station through which mobile network, commonly known as A Mobile Ad-hoc Network (MANET) is used by the people. A MANET can be described as an infrastructure-less and self-configure network with autonomous nodes. Participated nodes in MANETs move through the network constantly causing frequent topology changes. Designing suitable routing protocols to handle the dynamic topology changes in MANETs can enhance the performance of the network. In this regard, this paper proposes four algorithms for the routing problem in MANETs. First, we propose a new method called Classical Logic-based Routing Algorithm for the routing problem in MANETs. Second is a routing algorithm named Fuzzy Logic-based Routing Algorithm (FLRA). Third, a Reinforcement Learning-based Routing Algorithm is proposed to construct optimal paths in MANETs. Finally, a fuzzy logic-based method is accompanied with reinforcement learning to mitigate existing problems in FLRA. This algorithm is called Reinforcement Learning and Fuzzy Logic-based (RLFLRA) Routing Algorithm. Our proposed approaches can be deployed in dynamic environments and take four important fuzzy variables such as available bandwidth, residual energy, mobility speed, and hop-count into consideration. Simulation results depict that learning process has a great impact on network performance and RLFLRA outperforms other proposed algorithms in terms of throughput, route discovery time, packet delivery ratio, network access delay, and hop-count.
In this study, using a central composite design, the effects of addition of Spirulina platensis and Zedo gum to plain and probiotic yoghurt samples were investigated during storage. Lactobacillus paracasei proliferation was directly dependent on the addition of microalgae and was inversely affected by storage time. Probiotic samples containing S. platensis showed the highest antioxidative activity. Maximum stability was obtained at higher amounts of Zedo gum, while organoleptic and rheological attributes improved at 0.25% Zedo gum. Given the importance of probiotic viability, supplementation of probiotic yoghurt with Zedo gum/S. platensis may be consideredas a novel nutraceutical formulation. 相似文献
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH. 相似文献
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer. 相似文献
Herein, a simple melt-blending method is utilized to disperse of halloysite nanotubes (HNTs) in polystyrene/polyolefin elastomer (PS/POE) blends. Based on morphological studies, the PS/POE/HNT nanocomposite containing up to 3 phr HNTs shows excellent nanofiller dispersion, while those filled with 5 phr HNTs exhibit nanofiller aggregation. To overcome the nanofiller aggregation issue, the polypropylene-grafted-maleic anhydride (PP-g-MA) compatibilizer is added to the PS/POE/HNT nanocomposite, which results in improved mechanical properties for the nanocomposite sheets. Furthermore, the addition of compatibilized HNTs to the PS/POE blends leads to decreased O2 and N2 gas permeabilities. Besides, incorporating POE, HNTs, and PP-g-MA leads to a decrease in water vapor transmission of PS. In the end, the experimentally-determined mechanical properties and gas permeabilities of the nanocomposite sheets are compared to those predicted by prevalent theoretical models, revealing a good agreement between the experimental and theoretical results. Molecular-dynamics simulations are also carried out to calculate the gas diffusion coefficients in the different sheets to further support the experimental findings in this study. Overall, the PS/POE/HNT/PP-g-MA nanocomposite sheets fabricated in this work demonstrate excellent mechanical and gas barrier properties; and hence, can be used as candidate packaging materials. However, the strength of the resulting PS/POE blend may be inferior to that of the virgin PS. 相似文献