Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).
Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.